 01 KNAPSACK PROBLEM
 DEPARTMENT OF COMPUTER SCIENCE

[image: image1.png]

CONTENTS

I. INTRODUCTION TO COMBINATORIAL OPTIMIZATION

II. KNAPSACK PROBLEM

· VARIANTS OF KNAPSACK

III. 01 KNAPSACK PROBLEM

· ALGORITHM OF 01 KNAPSACK PROBLEM

· C IMPLEMENTATION OF KNAPACK PROBLEM

Combinatorial and Integer Optimization

Combinatorial optimization problems are concerned with the efficient allocation of limited resources to meet desired objectives when the values of some or all of the variables are restricted to be integral. Constraints on basic resources restrict the possible alternatives that are considered feasible. Still, in most such problems, there are many possible alternatives to consider and one overall goal determines which of these alternatives is best. For example, most airlines need to determine crew schedules which minimize the total operating cost.

Many practical problems, activities are indivisible and have only a finite number of alternative choices and consequently can appropriately be formulated as combinatorial optimization problems. Combinatorial optimization models are often referred to as integer programming models.

Combinatorial optimization is the process of finding one or more optimal solutions in a well defined discrete problem space. Such problems occur in almost all fields of management as well as in many engineering disciplines
Some Applications of Combinatorial Optimization:

Knapsack problems: Suppose one wants to fill a knapsack that can hold a total weight of W with some combination of items from a list of n possible items each with weight wi and value vi so that the value of the items packed into the knapsack is maximized. This problem has a single linear constraint (that the weight of the items in the knapsack not exceed W), a linear objective function which sums the values of the items in the knapsack.

Network and graph problems: Many optimization problems can be represented by a network. Many practical problems arise around physical networks such as city streets, highways, rail systems, communication networks, and integrated circuits. For example, the assignment problem where one wishes to assign a set of persons to some set of jobs in a way that minimizes the cost of the assignment. Here one set of nodes represents the people to be assigned, another set of nodes represents the possible jobs, and there is an arc connecting a person to a job if that person is capable of performing that job.

 Chinese postman problem where one wishes to find a path (a connected sequence of edges) through the graph that starts and ends at the same node, that covers every edge of the graph at least once, and that has the shortest length possible. If one adds the restriction that each node must be visited exactly one time and drops the requirement that each edge be traversed, the problem becomes the notoriously difficult traveling salesman problem.
Solution Techniques for Integer Programming: Solving combinatorial optimization problems, can be a difficult task. The difficulty arises from the fact that in combinatorial problems, one must search a lattice of feasible points or, in the mixed-integer case, a set of disjoint half lines or line segments to find an optimal solution. Thus integer programming problems have many local optima and finding a global optimum to the problem requires one to prove that a particular solution dominates all feasible points by arguments other than the calculus-based derivative approaches of convex programming.

There are, at least, three different approaches for solving integer programming problems, although they are frequently combined into "hybrid" solution procedures in computational practice. They are

· enumerative techniques

· relaxation and decomposition techniques

· cutting planes approaches based on polyhedral combinatorics

 KNAPSACK PROBLEM
The knapsack problem is a problem in combinatorial optimization. It derives its name from the following maximization problem of the best choice of essentials that can fit into one bag to be carried on a trip. Given a set of items, each with a cost and a value, determine the number of each item to include in a collection so that the total cost is less than a given limit and the total value is as large as possible.
Given items of different values and volumes, find the most valuable set of items that fit in a knapsack of fixed volume.

Definition:
There is a knapsack of capacity c > 0 and N items. Each item has value vi > 0 and weight wi > 0. Find the selection of items that fit, ∑i=1N aiwi ≤ c ,
and the total value, ∑i=1N aivi is maximized
 & where ai is a positive number.
Variants of Knapsack problem
· 0-1 knapsack problem
· bounded knapsack problem
· unbounded knapsack problem
· Fractional knapsack problem

In the following, we have n kinds of items, 1 through n. Each item j has a value pj and a weight wj. The maximum weight that we can carry in the bag is c.

The 0-1 knapsack is a special case of the original knapsack problem in which each item of input cannot be subdivided to fill a container in which that input partially fits.

0-1 knapsack problem : restricts the number of each kind of item, to ai zero or one.

Mathematically the 0-1-knapsack problem can be formulated as:

maximize , ∑i=1N aivi

subject to ∑i=1N aiwi ≤ c ,
The bounded knapsack problem : restricts the number of each item to a specific value.

Mathematically the bounded knapsack problem can be formulated as:

maximize ∑i=1N aivi
subject to ∑i=1N aiwi ≤ c ,
The unbounded knapsack problem : places no bounds on the number of each item.
Fractional knapsack problem : You can take a fractional number of items. Has the same constraint as 0/1 knapsack. Can solve using a greedy algorithm.
Of particular interest is the special case of the problem with these properties:

· It is a decision problem

· It is a 0/1 problem

· For each item, the cost equals the value: C = V
Notice that in this special case, the problem is equivalent to this: given a set of integers, does any subset of it add up to exactly C? Or, if negative costs are allowed and C is chosen to be zero, the problem is: given a set of integers, does any subset add up to exactly 0? This special case is called the subset sum problem. In the field of cryptography the term knapsack problem is often used to refer specifically to the subset sum problem.

The knapsack problem is often solved using dynamic programming, though no polynomial-time algorithm is known for the general problem. Both the general knapsack problem and the subset sum problem are NP-hard, and this has led to attempts to use subset sum as the basis for public key cryptography systems, such as Merkle-Hellman. These attempts typically used some group other than the integers. Merkle-Hellman and several similar algorithms were later broken, because the particular subset sum problems they produced were in fact solvable by polynomial-time algorithms.

The decision version of the knapsack problem described above ("can a value of at least V be achieved without exceeding the cost C?") is NP-complete. The subset-sum version of the knapsack problem is commonly known as one of Karp's 21 NP-complete problems.
0-1 Knapsack problem
In its basic form, the problem is to maximize the value of items placed in a knapsack without going over a weight limit. This is the 0/1 Knapsack Problem, defined more formally as

maximize ∑i=1N aivi
subject to ∑i=1N iwi ≤ c ,
ai= 0 or 1, 1≤ i ≤ n

where vi is the value of item i ,wi is item j 's weight, ai is an integer, and W is the maximum weight allowed in the knapsack.
01 Knapsack Problem Solutions
· This problem can be solved by
· Brute force:

· Dynamic Programming:
Brute force method:

· straightforward algorithm

· Try all possibilities.

· An object can be in or out and we sum weights to be sure we are not over W.
· Since there are n items, there are 2n possible combinations of items

· We go through all combinations and find the one with maximum value and with total weight less or equal to W

· This takes O(n2n) time and is a very bad approach. In order to improve the running time we try using dynamic programming.

Dynamic Programming Approach:

Dynamic programming reduces the running time of the algorithm that composed of overlapping substructure which are later used for finding global optimum solution.
Defining Subproblem
· If items are labeled 1..n, then a subproblem would be to find an optimal solution for Sk = {items labeled 1, 2, .. k}
· Add another parameter: w, which will represent the exact weight for each subset of items. The subproblem then will be to compute B[k,w]
· Let i be the highest numbered item in an optimal solution S for the weight W.

· S`=S-{i} … and optimal solution for the maximum weight W-wi
Recursive Formula for subproblems
 It means, that the best subset of Sk that has total weight w is:
· the best subset of Sk-1 that has total weight w, or

· the best subset of Sk-1 that has total weight w-wk plus the item k
Recursive formula for subproblem is
 {
B[k-1,W]
if wk >W
B[k,w] =
 {
max{B[k-1,W],B[k-1,W- wk] + bk}
else

Recursive Formula

B[k,w] = {
B[k-1,W]
if wk >W

 {
max{B[k-1,W],B[k-1,W- wk] + bk}
else
The best subset of Sk that has the total weight w, either contains item k or not.
· First case: wk >W. Item k can’t be part of the solution, since if it was, the total weight would be w, which is unacceptable.

· Second case: wk <W. Then the item k can be in the solution, and we choose the case with greater value.

Note: Here in the above cases B[1..n,1..W] represents a 2-D array to store the values of the subsolutions and the final solution will be found in B[n,W].
0-1 Knapsack Algorithm

for w = 0 to W

B[0,w] = 0

for i = 1 to n

B[i,0] = 0

for w = 0 to W

if wi <= w // item i can be part of the solution

if (bi + B[i-1,w-wi] > B[i-1,w])

B[i,w] = bi + B[i-1,w- wi]

else

B[i,w] = B[i-1,w]

else

B[i,w] = B[i-1,w] // wi > w
Here the running time of the algorithm is O(nW) , it is better the brute force algorithm of O(2n).Here from the above algorithm we will be able to get the maximum value that can be stored in a knapsack from the B[n,W] ,but we will not be able to get the items that are used . To display the items that are used in order the algorithm is given below :

PRINT(B[N,w],I,k)

If(B[i,k]!=B[i-1,k])

i=i-1

k=k-w

PRINT(B[i,k],i,k)

display(i)

else if(i!=0&&k!=0)

i=i-1

else

return

end PRINT
C PROGRAM FOR IMPLEMENTATION OF 01 KNAPSACK PROBLEM

#include <stdio.h>

#include<conio.h>

#define MAXWEIGHT 100

int n = 10;
int c[10] = {8, 6, 4};

int v[10] = {16, 10, 7};

int W = 10;

void fill_sack() {

int a[MAXWEIGHT];

int last_added[MAXWEIGHT];

int i, j;

int aux;

for (i = 0; i <= W; ++i) {

a[i] = 0;

last_added[i] = -1;

}

a[0] = 0;

for (i = 1; i <= W; ++i)

for (j = 0; j < n; ++j)

if ((c[j] <= i) && (a[i] < a[i - c[j]] + v[j])) {

a[i] = a[i - c[j]] + v[j];

last_added[i] = j;

}

for (i = 0; i <= W; ++i)

if (last_added[i] != -1)

printf("Weight %d; Benefit: %d; addobject %d (%d$ %dKg) to weight %d.\n", i, a[i], last_added[i] + 1, v[last_added[i]], c[last_added[i]], i - c[last_added[i]]);

printf("\n");

aux = W;

while ((aux > 0) && (last_added[aux] != -1))

{

printf("Added object %d (%d$ %dKg). Space left: %d\n", last_added[aux] + 1, v[last_added[aux]], c[last_added[aux]], aux - c[last_added[aux]]);

aux -= c[last_added[aux]];

}

printf("Total value added: %d$\n", a[W]);

}

int main(){

fill_sack();

 getch();

return 0;

}
