[vlc-devel] [PATCH 18/18] viewpoint: use quaternion instead of euler angles

Alexandre Janniaux ajanni at videolabs.io
Wed Mar 31 09:25:50 UTC 2021


It enables viewpoint producers to provide an orientation without
singularities at north and south poles.

Refs #18089, #18760

---
 include/vlc_viewpoint.h |  18 +--
 src/misc/viewpoint.c    | 240 ++++++++++++++++++++++++++++++++--------
 2 files changed, 205 insertions(+), 53 deletions(-)

diff --git a/include/vlc_viewpoint.h b/include/vlc_viewpoint.h
index b3fbe812c7..b3336b5ae0 100644
--- a/include/vlc_viewpoint.h
+++ b/include/vlc_viewpoint.h
@@ -37,24 +37,28 @@
 /**
  * Viewpoints
  */
+
 struct vlc_viewpoint_t {
-    float yaw;   /* yaw in degrees */
-    float pitch; /* pitch in degrees */
-    float roll;  /* roll in degrees */
+    /**
+     * orientation quaternion with the following properties:
+     *  1/ use ijk = -1 for the operations
+     *  2/ memory layout is [x, y, z, w] (like GLSL)
+     *  3/ system is right-handed
+     */
+    float quat[4];
     float fov;   /* field of view in degrees */
 };

 static inline void vlc_viewpoint_init( vlc_viewpoint_t *p_vp )
 {
-    p_vp->yaw = p_vp->pitch = p_vp->roll = 0.0f;
+    p_vp->quat[3] = 1;
+    p_vp->quat[0] = p_vp->quat[1] = p_vp->quat[2] = 0;
     p_vp->fov = FIELD_OF_VIEW_DEGREES_DEFAULT;
 }

 static inline void vlc_viewpoint_clip( vlc_viewpoint_t *p_vp )
 {
-    p_vp->yaw = fmodf( p_vp->yaw, 360.f );
-    p_vp->pitch = fmodf( p_vp->pitch, 360.f );
-    p_vp->roll = fmodf( p_vp->roll, 360.f );
+    // TODO: normalize quaternion
     p_vp->fov = VLC_CLIP( p_vp->fov, FIELD_OF_VIEW_DEGREES_MIN,
                           FIELD_OF_VIEW_DEGREES_MAX );
 }
diff --git a/src/misc/viewpoint.c b/src/misc/viewpoint.c
index 72f68bb40f..ea03c6ced1 100644
--- a/src/misc/viewpoint.c
+++ b/src/misc/viewpoint.c
@@ -25,63 +25,211 @@
 #endif

 #include <vlc_viewpoint.h>
+#include <assert.h>

-void vlc_viewpoint_to_4x4( const vlc_viewpoint_t *vp, float *m )
+/* Quaternion to/from Euler conversion.  */
+
+static void QuaternionToEuler(float *yaw, float *pitch, float *roll, const float *q)
 {
-    float yaw   = vp->yaw   * (float)M_PI / 180.f;
-    float pitch = vp->pitch * (float)M_PI / 180.f;
-    float roll  = vp->roll  * (float)M_PI / 180.f;
-
-    float s, c;
-
-    s = sinf(pitch);
-    c = cosf(pitch);
-    const float x_rot[4][4] = {
-        { 1.f,    0.f,    0.f,    0.f },
-        { 0.f,    c,      -s,      0.f },
-        { 0.f,    s,      c,      0.f },
-        { 0.f,    0.f,    0.f,    1.f } };
-
-    s = sinf(yaw);
-    c = cosf(yaw);
-    const float y_rot[4][4] = {
-        { c,      0.f,    s,     0.f },
-        { 0.f,    1.f,    0.f,    0.f },
-        { -s,      0.f,    c,      0.f },
-        { 0.f,    0.f,    0.f,    1.f } };
-
-    s = sinf(roll);
-    c = cosf(roll);
-    const float z_rot[4][4] = {
-        { c,      s,      0.f,    0.f },
-        { -s,     c,      0.f,    0.f },
-        { 0.f,    0.f,    1.f,    0.f },
-        { 0.f,    0.f,    0.f,    1.f } };
-
-    /**
-     * Column-major matrix multiplication mathematically equal to
-     * z_rot * x_rot * y_rot
+    /* The matrix built from the angles is made from the multiplication of the
+     * following matrices:
+     *                    ⎡ cos(yaw)  0  -sin(yaw) ⎤
+     *  m_yaw (y_rot)   = ⎢    0      1      0     ⎥
+     *                    ⎣ sin(yaw)  0  cos(yaw)  ⎦
+     *
+     *                    ⎡ 1       0           0      ⎤
+     *  m_pitch (x_rot) = ⎢ 0  cos(pitch)   sin(pitch) ⎥
+     *                    ⎣ 0  -sin(pitch)  cos(pitch) ⎦
+     *
+     *                    ⎡ cos(roll)   sin(roll)  0 ⎤
+     *  m_roll (z_rot)  = ⎢ -sin(roll)  cos(roll)  0 ⎥
+     *                    ⎣     0           0      1 ⎦
+     *
+     * Which, multiplied in the correct order will bring, with the symbols
+     * rewritten: sin = s , cos = c, yaw = y, pitch = p, roll = r
+     *
+     *     ⎡s(p)⋅s(r)⋅s(y) + c(r)⋅c(y)  s(r)⋅c(p)  s(p)⋅s(r)⋅c(y) - s(y)⋅c(r)⎤
+     * V = ⎢s(p)⋅s(y)⋅c(r) - s(r)⋅c(y)  c(p)⋅c(r)  s(p)⋅c(r)⋅c(y) + s(r)⋅s(y)⎥
+     *     ⎣           s(y)⋅c(p)          -s(p)           c(p)⋅c(y)          ⎦
+     *
+     * We can first extract pitch = atan2( -V_32, sqrt(V_31^2 + V_33^2) )
+     *
+     * By taking the case |pitch| = 90 degree, it simplify c(y) and s(y) and:
+     *      roll = atan2( V_11, -V_21 )
+     *      yaw  = atan2( V_11, -V_13 )
+     *
+     * Otherwise, |pitch| != 90 degree and we can get:
+     *      roll = atan2( V_12, V_22 )
+     *      yaw  = atan2( V_31, V_33 )
+     *
+     * The equivalent matrix obtained by converting the equivalent quaternion
+     * Q = ((x, y, z), w) into a tranform matrix (\ref vlc_viewpoint_to_4x4)
+     * is equal to:
+     *
+     *      ⎡ xx + ww -yy - zz    2*(xy - zw)       2*(xz + yw)     ⎤
+     *  U = ⎢ 2*(xy + zw)         1 - 2*(xx + zz)   2*(yz - xw)     ⎥
+     *      ⎣ 2*(xz - yw)         2*(yz + xw)       1 - 2*(xx + yy) ⎦
+     *
+     * By identifying the coefficient in the matrix V computed above and the
+     * matrix U obtained from converting the quaternion to 3x3 matrix, we get
+     * the following results.
      */
-    memset(m, 0, 16 * sizeof(float));
-    for (int i=0; i<4; ++i)
-        for (int j=0; j<4; ++j)
-            for (int k=0; k<4; ++k)
-                for (int l=0; l<4; ++l)
-                    m[4*i+l] += y_rot[i][j] * x_rot[j][k] * z_rot[k][l];
+
+    /* Rename variables and precompute square values to improve readability, as
+     * they are used multiple times. */
+    float qw = q[3];
+    float qx = q[0];
+    float qy = q[1];
+    float qz = q[2];
+
+    float sqx = qx * qx;
+    float sqy = qy * qy;
+    float sqz = qz * qz;
+    float sqw = qw * qw;
+
+    /* The test value is extracted from V_23 = -sin(pitch), which is also
+     * computed as V_23 = 2 * (qw*qx + qy*qz). When abs(V_23 / 2) > = 0.4999,
+     * the cos(pitch) will be 0 and we need a fallback method to get the other
+     * angles in the singularity. If the quaternion is scaled, the scale is
+     * squared because we multiply components by pair, so there's no need for
+     * square root here when computing unit. */
+    float test = - (qw*qx + qy*qz);
+    float unit = sqx + sqy + sqz + sqw;
+
+    /* Diagonal values. */
+    float V_11 = 1 - 2 * (sqy + sqz);
+    float V_22 = 1 - 2 * (sqx + sqz);
+    float V_33 = 1 - 2 * (sqx + sqy);
+
+    /* Values with a minus sign. */
+    float V_13 = 2 * (qx * qz - qw * qy);
+    float V_21 = 2 * (qx * qy - qw * qz);
+
+    /* Values with only plus sign. */
+    float V_23 = 2 * (qw * qx + qy * qz);
+
+    /**
+     * Original code for this part was from:
+     * http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/
+     **/
+    if (test > 0.499f * unit)
+    {
+        /* singularity at north pole */
+        *yaw = -asin(V_11);
+        *pitch = - (float)M_PI_2;
+        *roll = 0;
+    }
+    else if (test < -0.499f * unit)
+    {
+        /* singularity at south pole */
+        *yaw = asin(V_11);
+        *pitch = (float)M_PI_2;
+        *roll = 0;
+    }
+    else
+    {
+        *yaw   = atan2( V_13, V_33 );
+        *pitch = atan2( -V_23, sqrt( V_21*V_21 + V_22*V_22 ) );
+        *roll  = -atan2( V_21, V_22 );
+    }
+}
+
+static void EulerToQuaternion(float *q, float yaw, float pitch, float roll)
+{
+    const float c_yaw   = cos(yaw / 2.f);
+    const float s_yaw   = sin(yaw / 2.f);
+    const float c_pitch = cos(pitch / 2.f);
+    const float s_pitch = sin(pitch / 2.f);
+    const float c_roll  = cos(roll / 2.f);
+    const float s_roll  = sin(roll / 2.f);
+
+    /* The values below are the result of converting each Euler rotation
+     * into it's equivalent quaternion, and then multiplying the quaternions
+     * together. It also means that any additional Euler rotation order
+     * conventions can easly be added with the same method. */
+
+    q[3] =  c_yaw * c_pitch * c_roll - s_yaw * s_pitch * s_roll;
+    q[0] =  s_yaw * c_pitch * s_roll - c_yaw * s_pitch * c_roll;
+    q[1] = -s_yaw * c_pitch * c_roll - c_yaw * s_pitch * s_roll;
+    q[2] =  c_yaw * c_pitch * s_roll + s_yaw * s_pitch * c_roll;
+}
+
+void vlc_viewpoint_to_4x4( const vlc_viewpoint_t *vp, float *m )
+{
+    const float *q = vp->quat;
+
+    /* Scaling factor is squared when multiplying the components
+     * pair-wise, so we don't need to use square roots here. */
+    const float square_norm = q[0]*q[0] + q[1]*q[1]
+                            + q[2]*q[2] + q[3]*q[3];
+
+    const float xx = q[0] * q[0] / square_norm;
+    const float yy = q[1] * q[1] / square_norm;
+    const float zz = q[2] * q[2] / square_norm;
+    const float ww = q[3] * q[3] / square_norm;
+
+    const float xy = q[0] * q[1] / square_norm;
+    const float zw = q[2] * q[3] / square_norm;
+    const float yz = q[1] * q[2] / square_norm;
+    const float xw = q[0] * q[3] / square_norm;
+
+    const float xz = q[0] * q[2] / square_norm;
+    const float yw = q[1] * q[3] / square_norm;
+
+    /* The quaternion is the opposite rotation of the view.
+     * We need to inverse the matrix at the same time. */
+
+    /*      ⎡ xx + ww -yy - zz    2*(xy - zw)       2*(xz + yw)     ⎤
+     *  U = ⎢ 2*(xy + zw)         1 - 2*(xx + zz)   2*(yz - xw)     ⎥
+     *      ⎣ 2*(xz - yw)         2*(yz + xw)       1 - 2*(xx + yy) ⎦
+     *
+     *  Written column by column, as a usual transformation matrix in the
+     *  projective space,
+     *
+     *  M = [   R   ][ T ]
+     *      [   0   ][ 1 ]
+     *
+     *  with R being the rotation matrix from the quaternion and T being a
+     *  translation vector, { 0 } here.
+     **/
+
+    m[0]  = xx + ww - yy - zz;
+    m[1]  = 2 * (xy + zw);
+    m[2]  = 2 * (xz - yw);
+    m[3]  = 0;
+
+    m[4]  = 2 * (xy - zw);
+    m[5]  = 1 - 2 * (xx + zz);
+    m[6]  = 2 * (yz + xw);
+    m[7]  = 0;
+
+    m[8]  = 2 * (xz + yw);
+    m[9]  = 2 * (yz - xw);
+    m[10] = 1 - 2 * (xx + yy);
+    m[11] = 0;
+
+    m[12] = m[13] = m[14] = 0;
+    m[15] = 1;
 }

 void vlc_viewpoint_from_euler(vlc_viewpoint_t *vp,
                               float yaw, float pitch, float roll)
 {
-    vp->yaw   = -yaw;
-    vp->pitch = -pitch;
-    vp->roll  = -roll;
+    /* convert angles from degrees into radians */
+    yaw   = -yaw   * (float)M_PI / 180.f;
+    pitch = -pitch * (float)M_PI / 180.f;
+    roll  = -roll  * (float)M_PI / 180.f;
+
+    EulerToQuaternion(vp->quat, yaw, pitch, roll);
 }

 void vlc_viewpoint_to_euler(const vlc_viewpoint_t *vp,
                             float *yaw, float *pitch, float *roll)
 {
-    *yaw   = -vp->yaw;
-    *pitch = -vp->pitch;
-    *roll  = -vp->roll;
+    QuaternionToEuler(yaw, pitch, roll, vp->quat);
+
+    /* convert angles from radian into degrees */
+    *yaw   = -180.f / (float)M_PI * (*yaw);
+    *pitch = -180.f / (float)M_PI * (*pitch);
+    *roll  = -180.f / (float)M_PI * (*roll);
 }
--
2.31.0


More information about the vlc-devel mailing list