
Introduction to AVX2 optimizations in x264

x264 is a good example of a program with many integer SIMD functions that operate on a wide 
variety of data types and perform a variety of different operations. Few of these are simple enough that 
we can change register sizes from 128-bit to 256-bit trivially; many are frequency transforms, FIR 
filters, and other functions with a lot of data mixing and dependency. Just like moving from 64-bit to 
128-bit registers rarely gave an exact doubling of performance, moving from 128-bit to 256-bit rarely 
will here, too.

The shift from SSE2-derived integer SIMD to AVX2 is rather analogous to the change from 
MMX to SSE2 back during the era of the Pentium 4, Athlon 64, and Core 2 CPUs. However, there's a 
few core differences.

When SSE2 was introduced, the first implementations were often quite slow. The most extreme 
examples, the Athlon 64 and Core 1, only had 64-bit execution units, so an SSE2 function was often 
equal to or slower than the MMX equivalent in speed. It wasn't until the Core 2 Penryn (45nm) that this
finally ended, when Intel blessed Penryn with a lightning-fast 128-bit shuffle unit1, making MMX 
operations and their SSE2 equivalents finally equal in speed for all classes of instructions. With AVX2, 
this isn't a problem, at least with Haswell – Intel has long marketed Haswell's 256-bit load and 
arithmetic units, so 256-bit AVX2 operations can be largely expected to be just as fast as 128-bit SSE.2

Secondly, AVX2 operations are often extended from 128-bit in a somewhat unusual way. 
Instead of being logically expanded in the expected fashion, they operate on 128-bit lanes of data, with 
a few special inter-lane instructions like vpermd. This lets Intel implement larger SIMD by copy-
pasting smaller SIMD units, but it also adds yet another challenge in extending 128-bit code to 256-bit 
code.3

Thirdly, x264 has many functions that are smaller in width than 256-bit AVX registers, making 
it more difficult (or sometimes, impossible) to effectively use AVX2. This issue existed when moving 
from 64-bit MMX to 128-bit SSE2, of course, but it's more dramatic now since there's quite a lot of 
functions that aren't wide enough to make easy use of AVX2.

To facilitate the move to AVX2, we've extended the x264asm abstraction layer (x86inc.asm) to 
to include AVX operations and registers. This let us port a number of rather complex functions to AVX2
with far fewer changes than we would have expected. As always, x264asm is available under a BSD-
like license for anyone to use – if you're working on lots of x86 assembly code, I strongly recommend 
trying it!

I'd love to write an AVX2 optimization guide; there's plenty of tricks and subtleties that we've 
discovered along the way. Many of the functions I wrote before I had access to a Haswell turned out to 
be grossly suboptimal. Unfortunately, I'm pretty sure I'm still bound by the NDA here; the most I think 
I'm currently allowed to do is post performance numbers for individual functions, which you'll see on 
the next page.

1 Two of them, actually!
2 Like always, there might be some minor exceptions: for example, on Sandy Bridge, most AVX floating point operations

had 256-bit execution units, but rcpps (reciprocal approximation) did not, likely to save hardware. This is also no 
guarantee for future (especially non-Intel) CPUs; for example, Bulldozer supported AVX, but only uses 128-bit 
execution units, so it's probably no faster than SSE for floating point math.

3 Each 128-bit lane is operated on separately, so for example, pshufb shuffles 2 groups of 16 bytes separately instead of 1 
group of 32 bytes. The latter would be more convenient, but require more hardware and greater circuit depth, thus 
increasing latency or lowering clock speed.



Results from various functions

Some quick disclaimers here before we dive into individual functions. Many of these functions 
have not gotten the same level of optimization treatment that a lot of x264's x86 assembly has4, so there
probably are still future performance gains to be had. We've learned a lot already from working on the 
Haswell; many functions have been significantly revised multiple times as we discovered faster ways to
perform common operations. We can only expect there's still more to learn in the future!

There's also some functions that still could use AVX2 assembly and don't have any yet, so our 
work isn't complete, though I do feel we're relatively close.5 Also, this is not at all a complete list; I 
omitted some less important or less interesting functions.

Furthermore, keep in mind that x264 is not 100% assembly code. About half of x264's running 
time is spent in either optimized C code or mostly-non-SIMD assembly code, where AVX2 will not 
provide any gains. Even if all the SIMD assembly functions doubled in speed, x264 would only get 
33% faster because of this bottleneck.6

Function Description Cycles
(C code)

Cycles
(pre-AVX2)

Cycles
(AVX2)

Gain with
AVX27

Gain
vs. C

Notes

add8x8_idct 4x 4×4 inverse
transforms on 8×8
coefficient block

326.8 41.8 31.4 33.1% 10.4x x264 does almost all inverse
transforms in 8×8 groups, so
I did not optimize the 16×16
variant, even though it would

have gained more from
AVX2.

avg_16x16 6-bit fixed point
weighted average on
16×16 pixel block

673.7 63.5 49.2 29.1% 13.7x Widths smaller than 16 were
too small to gain anything.

denoise_dct adaptive deadzone
frequency-domain

denoiser on 4×4 or 8×8
coefficient block

152.9 18.1 10.2 77.5% 15.0x

dequant_8×8 coefficient
dequantization on 8×8

coefficient block

182.9 13.3 7.8 70.5% 23.4x 4×4 gains similarly.

hadamard_ac_16x16 sum of absolute AC
coefficients with 8×8
and 4×4 Hadamard

transforms on 16×16
pixel block

1190.8 188.5 102.5 83.9% 11.6x 16x8 gains similarly.

hpel_filter 6-tap separable filter to
calculate hpel pixels
(resize by 2x in each

direction)

8883.9 1239.8 885.5 40.0% 10.0x

4 I've only had the Haswell for about a month!
5 Contributions welcome, seriously! Poke us on #x264dev on Freenode IRC if you have any ideas or want to help. No 

video compression knowledge necessary, just love of SIMD hacking – and really, you don't have to be good at it; any 
skill level is okay. We love playing with this kind of thing.

6 A total running time of 0.5 seconds C code + 0.5 seconds SIMD code would become 0.5 + 0.25, or 0.75 seconds for 
every 1 second before. 1 / 0.75 is 1.33, or 33% faster. This is a case of Amdahl's Law.

7 Defined such that a gain of 100% means twice as fast.

http://en.wikipedia.org/wiki/Amdahl's_law#Speedup_in_a_sequential_program


Function Description Cycles
(C code)

Cycles
(pre-AVX2)

Cycles
(AVX2)

Gain with
AVX2

Gain
vs. C

Notes

intra_predict_16x16_p 16×16 planar intra
prediction mode

434.1 53.9 44.9 20.0% 9.7x 8×8/8x16 gain similarly.

lowres_init bilinear downscaling
filter for lowres

lookahead

9613.8 643.9 444.8 44.8% 21.6x

mbtree_propagate part of x264's mb-tree
algorithm; mostly

Newton's Method for
fast division

approximation

2903.9 240.4 182.5 31.7% 15.9x x264's only floating point
function

mc_chroma_8x8 6-bit fixed point
bilinear motion

compensation on 2x
8×8 pixel blocks

567.5 53.9 44.1 22.2% 12.9x Smaller widths have some,
albeit smaller, gains.

quant_8x8 coefficient quantization
on 8×8 coefficient

block

247.6 15.5 9.0 72.2% 27.5x 4×4 gains similarly.

sa8d_satd_16x16 combined satd/sa8d
calculation on 16×16

pixel block

1546.7 189.9 113.6 67.2% 13.6x8

sad_x4_16x16 SAD comparisons
between 4x 16×16 pixel

blocks and one
reference block

1855.5 61.6 53.8 14.5% 34.5x This was a function that was
expected to have no real gain
with AVX2 for width reasons,
but nevertheless we were able

to shave off a good few
cycles. sad_x3 gains

similarly.

satd_16x16 16x 4×4 SATDs on
16×16 pixel block

725.9 115.9 63.1 83.7% 11.5x8 x264's most heavily
optimized function, and very

important. Smaller widths
gain significantly less, but

still some.

ssd_16x16 sum of squared
differences between

two 16×16 pixel blocks

306.5 51.8 36.9 40.4% 8.3x Widths smaller than 16 were
too small to gain anything.

sub16x16_dct 16x 4×4 forward
transform on 16×16

pixel blocks

787.2 148.9 115.5 28.9% 6.8x Smaller widths gain less, but
aren't used very often.

sub16x16_dct8 4x 8×8 forward
transform on 16×16

pixel blocks

1523.8 239.5 145.8 64.3% 10.5x Smaller widths gain less, but
aren't used very often.

var_16x16 variance of 16×16 pixel
block

339.3 48.6 31.1 56.3% 10.9x Widths smaller than 16 were
too small to gain anything.

weight_w16 6-bit fixed point weight
of width-16 pixel block

697.0 53.6 34.3 56.3% 19.8x Widths smaller than 16
gained much less, but still

some.

8 The C code for SATD is already munged into this wonderfully evil pseudo-SIMD code that's about 60% faster than the 
naive C.


	Introduction to AVX2 optimizations in x264
	Results from various functions


