[x265] [PATCH] Uncrustified slicetype.cpp
gopu at multicorewareinc.com
gopu at multicorewareinc.com
Thu Aug 8 09:02:37 CEST 2013
# HG changeset patch
# User ggopu
# Date 1375945321 -19800
# Node ID 490eaf380f1bdb7da6574543e539101432264a5a
# Parent 33aa6210de6d486b413f0a6ef82750a89d76c981
Uncrustified slicetype.cpp
diff -r 33aa6210de6d -r 490eaf380f1b source/encoder/slicetype.cpp
--- a/source/encoder/slicetype.cpp Wed Aug 07 22:36:10 2013 +0800
+++ b/source/encoder/slicetype.cpp Thu Aug 08 12:32:01 2013 +0530
@@ -39,18 +39,18 @@
// Indexed by pic_struct values
static const uint8_t delta_tfi_divisor[10] = { 0, 2, 1, 1, 2, 2, 3, 3, 4, 6 };
-static int x264_slicetype_frame_cost( x264_t *h, x264_mb_analysis_t *a,
- x264_frame_t **frames, int p0, int p1, int b,
- int b_intra_penalty );
+static int x264_slicetype_frame_cost(x264_t *h, x264_mb_analysis_t *a,
+ x264_frame_t **frames, int p0, int p1, int b,
+ int b_intra_penalty);
-static void x264_lowres_context_init( x264_t *h, x264_mb_analysis_t *a )
+static void x264_lowres_context_init(x264_t *h, x264_mb_analysis_t *a)
{
a->i_qp = X264_LOOKAHEAD_QP;
- a->i_lambda = x264_lambda_tab[ a->i_qp ];
- x264_mb_analyse_load_costs( h, a );
- if( h->param.analyse.i_subpel_refine > 1 )
+ a->i_lambda = x264_lambda_tab[a->i_qp];
+ x264_mb_analyse_load_costs(h, a);
+ if (h->param.analyse.i_subpel_refine > 1)
{
- h->mb.i_me_method = X264_MIN( X264_ME_HEX, h->param.analyse.i_me_method );
+ h->mb.i_me_method = X264_MIN(X264_ME_HEX, h->param.analyse.i_me_method);
h->mb.i_subpel_refine = 4;
}
else
@@ -62,25 +62,27 @@
}
/* makes a non-h264 weight (i.e. fix7), into an h264 weight */
-static void x264_weight_get_h264( int weight_nonh264, int offset, x264_weight_t *w )
+static void x264_weight_get_h264(int weight_nonh264, int offset, x264_weight_t *w)
{
w->i_offset = offset;
w->i_denom = 7;
w->i_scale = weight_nonh264;
- while( w->i_denom > 0 && (w->i_scale > 127 || !(w->i_scale & 1)) )
+ while (w->i_denom > 0 && (w->i_scale > 127 || !(w->i_scale & 1)))
{
w->i_denom--;
w->i_scale >>= 1;
}
- w->i_scale = X264_MIN( w->i_scale, 127 );
+
+ w->i_scale = X264_MIN(w->i_scale, 127);
}
-static NOINLINE pixel *x264_weight_cost_init_luma( x264_t *h, x264_frame_t *fenc, x264_frame_t *ref, pixel *dest )
+static NOINLINE pixel *x264_weight_cost_init_luma(x264_t *h, x264_frame_t *fenc, x264_frame_t *ref, pixel *dest)
{
int ref0_distance = fenc->i_frame - ref->i_frame - 1;
+
/* Note: this will never run during lookahead as weights_analyse is only called if no
* motion search has been done. */
- if( fenc->lowres_mvs[0][ref0_distance][0][0] != 0x7FFF )
+ if (fenc->lowres_mvs[0][ref0_distance][0][0] != 0x7FFF)
{
int i_stride = fenc->i_stride_lowres;
int i_lines = fenc->i_lines_lowres;
@@ -88,14 +90,17 @@
int i_mb_xy = 0;
pixel *p = dest;
- for( int y = 0; y < i_lines; y += 8, p += i_stride*8 )
- for( int x = 0; x < i_width; x += 8, i_mb_xy++ )
+ for (int y = 0; y < i_lines; y += 8, p += i_stride * 8)
+ {
+ for (int x = 0; x < i_width; x += 8, i_mb_xy++)
{
int mvx = fenc->lowres_mvs[0][ref0_distance][i_mb_xy][0];
int mvy = fenc->lowres_mvs[0][ref0_distance][i_mb_xy][1];
- h->mc.mc_luma( p+x, i_stride, ref->lowres, i_stride,
- mvx+(x<<2), mvy+(y<<2), 8, 8, x264_weight_none );
+ h->mc.mc_luma(p + x, i_stride, ref->lowres, i_stride,
+ mvx + (x << 2), mvy + (y << 2), 8, 8, x264_weight_none);
}
+ }
+
x264_emms();
return dest;
}
@@ -109,7 +114,7 @@
* fenc = ref + offset
* v = u + stride * chroma height */
-static NOINLINE void x264_weight_cost_init_chroma( x264_t *h, x264_frame_t *fenc, x264_frame_t *ref, pixel *dstu, pixel *dstv )
+static NOINLINE void x264_weight_cost_init_chroma(x264_t *h, x264_frame_t *fenc, x264_frame_t *ref, pixel *dstu, pixel *dstv)
{
int ref0_distance = fenc->i_frame - ref->i_frame - 1;
int i_stride = fenc->i_stride[1];
@@ -117,129 +122,151 @@
int i_lines = fenc->i_lines[1];
int i_width = fenc->i_width[1];
int v_shift = CHROMA_V_SHIFT;
- int cw = 8*h->mb.i_mb_width;
- int ch = 16*h->mb.i_mb_height >> v_shift;
+ int cw = 8 * h->mb.i_mb_width;
+ int ch = 16 * h->mb.i_mb_height >> v_shift;
int height = 16 >> v_shift;
- if( fenc->lowres_mvs[0][ref0_distance][0][0] != 0x7FFF )
+ if (fenc->lowres_mvs[0][ref0_distance][0][0] != 0x7FFF)
{
- x264_frame_expand_border_chroma( h, ref, 1 );
- for( int y = 0, mb_xy = 0, pel_offset_y = 0; y < i_lines; y += height, pel_offset_y = y*i_stride )
- for( int x = 0, pel_offset_x = 0; x < i_width; x += 8, mb_xy++, pel_offset_x += 8 )
+ x264_frame_expand_border_chroma(h, ref, 1);
+ for (int y = 0, mb_xy = 0, pel_offset_y = 0; y < i_lines; y += height, pel_offset_y = y * i_stride)
+ {
+ for (int x = 0, pel_offset_x = 0; x < i_width; x += 8, mb_xy++, pel_offset_x += 8)
{
pixel *pixu = dstu + pel_offset_y + pel_offset_x;
pixel *pixv = dstv + pel_offset_y + pel_offset_x;
- pixel *src1 = ref->plane[1] + pel_offset_y + pel_offset_x*2; /* NV12/NV16 */
+ pixel *src1 = ref->plane[1] + pel_offset_y + pel_offset_x * 2; /* NV12/NV16 */
int mvx = fenc->lowres_mvs[0][ref0_distance][mb_xy][0];
int mvy = fenc->lowres_mvs[0][ref0_distance][mb_xy][1];
- h->mc.mc_chroma( pixu, pixv, i_stride, src1, i_stride, mvx, 2*mvy>>v_shift, 8, height );
+ h->mc.mc_chroma(pixu, pixv, i_stride, src1, i_stride, mvx, 2 * mvy >> v_shift, 8, height);
}
+ }
}
else
- h->mc.plane_copy_deinterleave( dstu, i_stride, dstv, i_stride, ref->plane[1], i_stride, cw, ch );
- h->mc.plane_copy_deinterleave( dstu+i_offset, i_stride, dstv+i_offset, i_stride, fenc->plane[1], i_stride, cw, ch );
+ h->mc.plane_copy_deinterleave(dstu, i_stride, dstv, i_stride, ref->plane[1], i_stride, cw, ch);
+ h->mc.plane_copy_deinterleave(dstu + i_offset, i_stride, dstv + i_offset, i_stride, fenc->plane[1], i_stride, cw, ch);
x264_emms();
}
-static int x264_weight_slice_header_cost( x264_t *h, x264_weight_t *w, int b_chroma )
+static int x264_weight_slice_header_cost(x264_t *h, x264_weight_t *w, int b_chroma)
{
/* Add cost of weights in the slice header. */
int lambda = x264_lambda_tab[X264_LOOKAHEAD_QP];
+
/* 4 times higher, because chroma is analyzed at full resolution. */
- if( b_chroma )
+ if (b_chroma)
lambda *= 4;
int numslices;
- if( h->param.i_slice_count )
+ if (h->param.i_slice_count)
numslices = h->param.i_slice_count;
- else if( h->param.i_slice_max_mbs )
- numslices = (h->mb.i_mb_width * h->mb.i_mb_height + h->param.i_slice_max_mbs-1) / h->param.i_slice_max_mbs;
+ else if (h->param.i_slice_max_mbs)
+ numslices = (h->mb.i_mb_width * h->mb.i_mb_height + h->param.i_slice_max_mbs - 1) / h->param.i_slice_max_mbs;
else
numslices = 1;
+
/* FIXME: find a way to account for --slice-max-size?
* Multiply by 2 as there will be a duplicate. 10 bits added as if there is a weighted frame, then an additional duplicate is used.
* Cut denom cost in half if chroma, since it's shared between the two chroma planes. */
- int denom_cost = bs_size_ue( w[0].i_denom ) * (2 - b_chroma);
- return lambda * numslices * ( 10 + denom_cost + 2 * (bs_size_se( w[0].i_scale ) + bs_size_se( w[0].i_offset )) );
+ int denom_cost = bs_size_ue(w[0].i_denom) * (2 - b_chroma);
+ return lambda * numslices * (10 + denom_cost + 2 * (bs_size_se(w[0].i_scale) + bs_size_se(w[0].i_offset)));
}
-static NOINLINE unsigned int x264_weight_cost_luma( x264_t *h, x264_frame_t *fenc, pixel *src, x264_weight_t *w )
+static NOINLINE unsigned int x264_weight_cost_luma(x264_t *h, x264_frame_t *fenc, pixel *src, x264_weight_t *w)
{
unsigned int cost = 0;
int i_stride = fenc->i_stride_lowres;
int i_lines = fenc->i_lines_lowres;
int i_width = fenc->i_width_lowres;
pixel *fenc_plane = fenc->lowres[0];
- ALIGNED_ARRAY_16( pixel, buf,[8*8] );
+
+ ALIGNED_ARRAY_16(pixel, buf, [8 * 8]);
int pixoff = 0;
int i_mb = 0;
- if( w )
+ if (w)
{
- for( int y = 0; y < i_lines; y += 8, pixoff = y*i_stride )
- for( int x = 0; x < i_width; x += 8, i_mb++, pixoff += 8)
+ for (int y = 0; y < i_lines; y += 8, pixoff = y * i_stride)
+ {
+ for (int x = 0; x < i_width; x += 8, i_mb++, pixoff += 8)
{
- w->weightfn[8>>2]( buf, 8, &src[pixoff], i_stride, w, 8 );
- int cmp = h->pixf.mbcmp[PIXEL_8x8]( buf, 8, &fenc_plane[pixoff], i_stride );
- cost += X264_MIN( cmp, fenc->i_intra_cost[i_mb] );
+ w->weightfn[8 >> 2](buf, 8, &src[pixoff], i_stride, w, 8);
+ int cmp = h->pixf.mbcmp[PIXEL_8x8](buf, 8, &fenc_plane[pixoff], i_stride);
+ cost += X264_MIN(cmp, fenc->i_intra_cost[i_mb]);
}
- cost += x264_weight_slice_header_cost( h, w, 0 );
+ }
+
+ cost += x264_weight_slice_header_cost(h, w, 0);
}
else
- for( int y = 0; y < i_lines; y += 8, pixoff = y*i_stride )
- for( int x = 0; x < i_width; x += 8, i_mb++, pixoff += 8 )
+ for (int y = 0; y < i_lines; y += 8, pixoff = y * i_stride)
+ {
+ for (int x = 0; x < i_width; x += 8, i_mb++, pixoff += 8)
{
- int cmp = h->pixf.mbcmp[PIXEL_8x8]( &src[pixoff], i_stride, &fenc_plane[pixoff], i_stride );
- cost += X264_MIN( cmp, fenc->i_intra_cost[i_mb] );
+ int cmp = h->pixf.mbcmp[PIXEL_8x8](&src[pixoff], i_stride, &fenc_plane[pixoff], i_stride);
+ cost += X264_MIN(cmp, fenc->i_intra_cost[i_mb]);
}
+ }
+
x264_emms();
return cost;
}
-static NOINLINE unsigned int x264_weight_cost_chroma( x264_t *h, x264_frame_t *fenc, pixel *ref, x264_weight_t *w )
+static NOINLINE unsigned int x264_weight_cost_chroma(x264_t *h, x264_frame_t *fenc, pixel *ref, x264_weight_t *w)
{
unsigned int cost = 0;
int i_stride = fenc->i_stride[1];
int i_lines = fenc->i_lines[1];
int i_width = fenc->i_width[1];
pixel *src = ref + (i_stride >> 1);
- ALIGNED_ARRAY_16( pixel, buf, [8*16] );
+
+ ALIGNED_ARRAY_16(pixel, buf, [8 * 16]);
int pixoff = 0;
int height = 16 >> CHROMA_V_SHIFT;
- if( w )
+ if (w)
{
- for( int y = 0; y < i_lines; y += height, pixoff = y*i_stride )
- for( int x = 0; x < i_width; x += 8, pixoff += 8 )
+ for (int y = 0; y < i_lines; y += height, pixoff = y * i_stride)
+ {
+ for (int x = 0; x < i_width; x += 8, pixoff += 8)
{
- w->weightfn[8>>2]( buf, 8, &ref[pixoff], i_stride, w, height );
+ w->weightfn[8 >> 2](buf, 8, &ref[pixoff], i_stride, w, height);
+
/* The naive and seemingly sensible algorithm is to use mbcmp as in luma.
* But testing shows that for chroma the DC coefficient is by far the most
* important part of the coding cost. Thus a more useful chroma weight is
* obtained by comparing each block's DC coefficient instead of the actual
* pixels. */
- cost += h->pixf.asd8( buf, 8, &src[pixoff], i_stride, height );
+ cost += h->pixf.asd8(buf, 8, &src[pixoff], i_stride, height);
}
- cost += x264_weight_slice_header_cost( h, w, 1 );
+ }
+
+ cost += x264_weight_slice_header_cost(h, w, 1);
}
else
- for( int y = 0; y < i_lines; y += height, pixoff = y*i_stride )
- for( int x = 0; x < i_width; x += 8, pixoff += 8 )
- cost += h->pixf.asd8( &ref[pixoff], i_stride, &src[pixoff], i_stride, height );
+ for (int y = 0; y < i_lines; y += height, pixoff = y * i_stride)
+ {
+ for (int x = 0; x < i_width; x += 8, pixoff += 8)
+ {
+ cost += h->pixf.asd8(&ref[pixoff], i_stride, &src[pixoff], i_stride, height);
+ }
+ }
+
x264_emms();
return cost;
}
-static void x264_weights_analyse( x264_t *h, x264_frame_t *fenc, x264_frame_t *ref, int b_lookahead )
+static void x264_weights_analyse(x264_t *h, x264_frame_t *fenc, x264_frame_t *ref, int b_lookahead)
{
int i_delta_index = fenc->i_frame - ref->i_frame - 1;
/* epsilon is chosen to require at least a numerator of 127 (with denominator = 128) */
- const float epsilon = 1.f/128.f;
+ const float epsilon = 1.f / 128.f;
x264_weight_t *weights = fenc->weight[0];
- SET_WEIGHT( weights[0], 0, 1, 0, 0 );
- SET_WEIGHT( weights[1], 0, 1, 0, 0 );
- SET_WEIGHT( weights[2], 0, 1, 0, 0 );
+
+ SET_WEIGHT(weights[0], 0, 1, 0, 0);
+ SET_WEIGHT(weights[1], 0, 1, 0, 0);
+ SET_WEIGHT(weights[2], 0, 1, 0, 0);
int chroma_initted = 0;
/* Don't check chroma in lookahead, or if there wasn't a luma weight. */
- for( int plane = 0; plane <= 2 && !( plane && ( !weights[0].weightfn || b_lookahead ) ); plane++ )
+ for (int plane = 0; plane <= 2 && !(plane && (!weights[0].weightfn || b_lookahead)); plane++)
{
int cur_offset, start_offset, end_offset;
int minoff, minscale, mindenom;
@@ -247,29 +274,29 @@
int found;
float fenc_var = fenc->i_pixel_ssd[plane] + !ref->i_pixel_ssd[plane];
float ref_var = ref->i_pixel_ssd[plane] + !ref->i_pixel_ssd[plane];
- float guess_scale = sqrtf( fenc_var / ref_var );
+ float guess_scale = sqrtf(fenc_var / ref_var);
float fenc_mean = (float)fenc->i_pixel_sum[plane] / (fenc->i_lines[!!plane] * fenc->i_width[!!plane]) / (1 << (BIT_DEPTH - 8));
- float ref_mean = (float) ref->i_pixel_sum[plane] / (fenc->i_lines[!!plane] * fenc->i_width[!!plane]) / (1 << (BIT_DEPTH - 8));
+ float ref_mean = (float)ref->i_pixel_sum[plane] / (fenc->i_lines[!!plane] * fenc->i_width[!!plane]) / (1 << (BIT_DEPTH - 8));
//early termination
- if( fabsf( ref_mean - fenc_mean ) < 0.5f && fabsf( 1.f - guess_scale ) < epsilon )
+ if (fabsf(ref_mean - fenc_mean) < 0.5f && fabsf(1.f - guess_scale) < epsilon)
{
- SET_WEIGHT( weights[plane], 0, 1, 0, 0 );
+ SET_WEIGHT(weights[plane], 0, 1, 0, 0);
continue;
}
- if( plane )
+ if (plane)
{
weights[plane].i_denom = 6;
- weights[plane].i_scale = x264_clip3( round( guess_scale * 64 ), 0, 255 );
- if( weights[plane].i_scale > 127 )
+ weights[plane].i_scale = x264_clip3(round(guess_scale * 64), 0, 255);
+ if (weights[plane].i_scale > 127)
{
weights[1].weightfn = weights[2].weightfn = NULL;
break;
}
}
else
- x264_weight_get_h264( round( guess_scale * 128 ), 0, &weights[plane] );
+ x264_weight_get_h264(round(guess_scale * 128), 0, &weights[plane]);
found = 0;
mindenom = weights[plane].i_denom;
@@ -277,95 +304,97 @@
minoff = 0;
pixel *mcbuf;
- if( !plane )
+ if (!plane)
{
- if( !fenc->b_intra_calculated )
+ if (!fenc->b_intra_calculated)
{
x264_mb_analysis_t a;
- x264_lowres_context_init( h, &a );
- x264_slicetype_frame_cost( h, &a, &fenc, 0, 0, 0, 0 );
+ x264_lowres_context_init(h, &a);
+ x264_slicetype_frame_cost(h, &a, &fenc, 0, 0, 0, 0);
}
- mcbuf = x264_weight_cost_init_luma( h, fenc, ref, h->mb.p_weight_buf[0] );
- origscore = minscore = x264_weight_cost_luma( h, fenc, mcbuf, NULL );
+ mcbuf = x264_weight_cost_init_luma(h, fenc, ref, h->mb.p_weight_buf[0]);
+ origscore = minscore = x264_weight_cost_luma(h, fenc, mcbuf, NULL);
}
else
{
pixel *dstu = h->mb.p_weight_buf[0];
- pixel *dstv = h->mb.p_weight_buf[0]+fenc->i_stride[1]*fenc->i_lines[1];
- if( !chroma_initted++ )
- x264_weight_cost_init_chroma( h, fenc, ref, dstu, dstv );
+ pixel *dstv = h->mb.p_weight_buf[0] + fenc->i_stride[1] * fenc->i_lines[1];
+ if (!chroma_initted++)
+ x264_weight_cost_init_chroma(h, fenc, ref, dstu, dstv);
mcbuf = plane == 1 ? dstu : dstv;
- origscore = minscore = x264_weight_cost_chroma( h, fenc, mcbuf, NULL );
+ origscore = minscore = x264_weight_cost_chroma(h, fenc, mcbuf, NULL);
}
- if( !minscore )
+ if (!minscore)
continue;
// This gives a slight improvement due to rounding errors but only tests one offset in lookahead.
// Currently only searches within +/- 1 of the best offset found so far.
// TODO: Try other offsets/multipliers/combinations thereof?
cur_offset = fenc_mean - ref_mean * minscale / (1 << mindenom) + 0.5f * b_lookahead;
- start_offset = x264_clip3( cur_offset - !b_lookahead, -128, 127 );
- end_offset = x264_clip3( cur_offset + !b_lookahead, -128, 127 );
- for( int i_off = start_offset; i_off <= end_offset; i_off++ )
+ start_offset = x264_clip3(cur_offset - !b_lookahead, -128, 127);
+ end_offset = x264_clip3(cur_offset + !b_lookahead, -128, 127);
+ for (int i_off = start_offset; i_off <= end_offset; i_off++)
{
- SET_WEIGHT( weights[plane], 1, minscale, mindenom, i_off );
+ SET_WEIGHT(weights[plane], 1, minscale, mindenom, i_off);
unsigned int s;
- if( plane )
- s = x264_weight_cost_chroma( h, fenc, mcbuf, &weights[plane] );
+ if (plane)
+ s = x264_weight_cost_chroma(h, fenc, mcbuf, &weights[plane]);
else
- s = x264_weight_cost_luma( h, fenc, mcbuf, &weights[plane] );
- COPY3_IF_LT( minscore, s, minoff, i_off, found, 1 );
+ s = x264_weight_cost_luma(h, fenc, mcbuf, &weights[plane]);
+ COPY3_IF_LT(minscore, s, minoff, i_off, found, 1);
// Don't check any more offsets if the previous one had a lower cost than the current one
- if( minoff == start_offset && i_off != start_offset )
+ if (minoff == start_offset && i_off != start_offset)
break;
}
+
x264_emms();
- /* FIXME: More analysis can be done here on SAD vs. SATD termination. */
- /* 0.2% termination derived experimentally to avoid weird weights in frames that are mostly intra. */
- if( !found || (minscale == 1 << mindenom && minoff == 0) || (float)minscore / origscore > 0.998f )
+ /*
+ * FIXME: More analysis can be done here on SAD vs. SATD termination.
+ * 0.2% termination derived experimentally to avoid weird weights in frames that are mostly intra. */
+ if (!found || (minscale == 1 << mindenom && minoff == 0) || (float)minscore / origscore > 0.998f)
{
- SET_WEIGHT( weights[plane], 0, 1, 0, 0 );
+ SET_WEIGHT(weights[plane], 0, 1, 0, 0);
continue;
}
else
- SET_WEIGHT( weights[plane], 1, minscale, mindenom, minoff );
+ SET_WEIGHT(weights[plane], 1, minscale, mindenom, minoff);
- if( h->param.analyse.i_weighted_pred == X264_WEIGHTP_FAKE && weights[0].weightfn && !plane )
+ if (h->param.analyse.i_weighted_pred == X264_WEIGHTP_FAKE && weights[0].weightfn && !plane)
fenc->f_weighted_cost_delta[i_delta_index] = (float)minscore / origscore;
}
//FIXME, what is the correct way to deal with this?
- if( weights[1].weightfn && weights[2].weightfn && weights[1].i_denom != weights[2].i_denom )
+ if (weights[1].weightfn && weights[2].weightfn && weights[1].i_denom != weights[2].i_denom)
{
- int denom = X264_MIN( weights[1].i_denom, weights[2].i_denom );
+ int denom = X264_MIN(weights[1].i_denom, weights[2].i_denom);
int i;
- for( i = 1; i <= 2; i++ )
+ for (i = 1; i <= 2; i++)
{
- weights[i].i_scale = x264_clip3( weights[i].i_scale >> ( weights[i].i_denom - denom ), 0, 255 );
+ weights[i].i_scale = x264_clip3(weights[i].i_scale >> (weights[i].i_denom - denom), 0, 255);
weights[i].i_denom = denom;
- h->mc.weight_cache( h, &weights[i] );
+ h->mc.weight_cache(h, &weights[i]);
}
}
- if( weights[0].weightfn && b_lookahead )
+ if (weights[0].weightfn && b_lookahead)
{
//scale lowres in lookahead for slicetype_frame_cost
pixel *src = ref->buffer_lowres[0];
pixel *dst = h->mb.p_weight_buf[0];
- int width = ref->i_width_lowres + PADH*2;
- int height = ref->i_lines_lowres + PADV*2;
- x264_weight_scale_plane( h, dst, ref->i_stride_lowres, src, ref->i_stride_lowres,
- width, height, &weights[0] );
+ int width = ref->i_width_lowres + PADH * 2;
+ int height = ref->i_lines_lowres + PADV * 2;
+ x264_weight_scale_plane(h, dst, ref->i_stride_lowres, src, ref->i_stride_lowres,
+ width, height, &weights[0]);
fenc->weighted[0] = h->mb.p_weight_buf[0] + PADH + ref->i_stride_lowres * PADV;
}
}
-static void x264_slicetype_mb_cost( x264_t *h, x264_mb_analysis_t *a,
- x264_frame_t **frames, int p0, int p1, int b,
- int dist_scale_factor, int do_search[2], const x264_weight_t *w )
+static void x264_slicetype_mb_cost(x264_t *h, x264_mb_analysis_t *a,
+ x264_frame_t **frames, int p0, int p1, int b,
+ int dist_scale_factor, int do_search[2], const x264_weight_t *w)
{
x264_frame_t *fref0 = frames[p0];
x264_frame_t *fref1 = frames[p1];
@@ -377,15 +406,16 @@
const int i_mb_xy = i_mb_x + i_mb_y * i_mb_stride;
const int i_stride = fenc->i_stride_lowres;
const int i_pel_offset = 8 * (i_mb_x + i_mb_y * i_stride);
- const int i_bipred_weight = h->param.analyse.b_weighted_bipred ? 64 - (dist_scale_factor>>2) : 32;
- int16_t (*fenc_mvs[2])[2] = { &fenc->lowres_mvs[0][b-p0-1][i_mb_xy], &fenc->lowres_mvs[1][p1-b-1][i_mb_xy] };
- int (*fenc_costs[2]) = { &fenc->lowres_mv_costs[0][b-p0-1][i_mb_xy], &fenc->lowres_mv_costs[1][p1-b-1][i_mb_xy] };
+ const int i_bipred_weight = h->param.analyse.b_weighted_bipred ? 64 - (dist_scale_factor >> 2) : 32;
+
+ int16_t(*fenc_mvs[2])[2] = { &fenc->lowres_mvs[0][b - p0 - 1][i_mb_xy], &fenc->lowres_mvs[1][p1 - b - 1][i_mb_xy] };
+ int(*fenc_costs[2]) = { &fenc->lowres_mv_costs[0][b - p0 - 1][i_mb_xy], &fenc->lowres_mv_costs[1][p1 - b - 1][i_mb_xy] };
int b_frame_score_mb = (i_mb_x > 0 && i_mb_x < h->mb.i_mb_width - 1 &&
i_mb_y > 0 && i_mb_y < h->mb.i_mb_height - 1) ||
- h->mb.i_mb_width <= 2 || h->mb.i_mb_height <= 2;
+ h->mb.i_mb_width <= 2 || h->mb.i_mb_height <= 2;
- ALIGNED_ARRAY_16( pixel, pix1,[9*FDEC_STRIDE] );
- pixel *pix2 = pix1+8;
+ ALIGNED_ARRAY_16(pixel, pix1, [9 * FDEC_STRIDE]);
+ pixel *pix2 = pix1 + 8;
x264_me_t m[2];
int i_bcost = COST_MAX;
int list_used = 0;
@@ -393,22 +423,22 @@
int lowres_penalty = 4;
h->mb.pic.p_fenc[0] = h->mb.pic.fenc_buf;
- h->mc.copy[PIXEL_8x8]( h->mb.pic.p_fenc[0], FENC_STRIDE, &fenc->lowres[0][i_pel_offset], i_stride, 8 );
+ h->mc.copy[PIXEL_8x8](h->mb.pic.p_fenc[0], FENC_STRIDE, &fenc->lowres[0][i_pel_offset], i_stride, 8);
- if( p0 == p1 )
+ if (p0 == p1)
goto lowres_intra_mb;
// no need for h->mb.mv_min[]
- h->mb.mv_min_fpel[0] = -8*h->mb.i_mb_x - 4;
- h->mb.mv_max_fpel[0] = 8*( h->mb.i_mb_width - h->mb.i_mb_x - 1 ) + 4;
- h->mb.mv_min_spel[0] = 4*( h->mb.mv_min_fpel[0] - 8 );
- h->mb.mv_max_spel[0] = 4*( h->mb.mv_max_fpel[0] + 8 );
- if( h->mb.i_mb_x >= h->mb.i_mb_width - 2 )
+ h->mb.mv_min_fpel[0] = -8 * h->mb.i_mb_x - 4;
+ h->mb.mv_max_fpel[0] = 8 * (h->mb.i_mb_width - h->mb.i_mb_x - 1) + 4;
+ h->mb.mv_min_spel[0] = 4 * (h->mb.mv_min_fpel[0] - 8);
+ h->mb.mv_max_spel[0] = 4 * (h->mb.mv_max_fpel[0] + 8);
+ if (h->mb.i_mb_x >= h->mb.i_mb_width - 2)
{
- h->mb.mv_min_fpel[1] = -8*h->mb.i_mb_y - 4;
- h->mb.mv_max_fpel[1] = 8*( h->mb.i_mb_height - h->mb.i_mb_y - 1 ) + 4;
- h->mb.mv_min_spel[1] = 4*( h->mb.mv_min_fpel[1] - 8 );
- h->mb.mv_max_spel[1] = 4*( h->mb.mv_max_fpel[1] + 8 );
+ h->mb.mv_min_fpel[1] = -8 * h->mb.i_mb_y - 4;
+ h->mb.mv_max_fpel[1] = 8 * (h->mb.i_mb_height - h->mb.i_mb_y - 1) + 4;
+ h->mb.mv_min_spel[1] = 4 * (h->mb.mv_min_fpel[1] - 8);
+ h->mb.mv_max_spel[1] = 4 * (h->mb.mv_max_fpel[1] + 8);
}
#define LOAD_HPELS_LUMA(dst, src) \
@@ -418,38 +448,38 @@
(dst)[2] = &(src)[2][i_pel_offset]; \
(dst)[3] = &(src)[3][i_pel_offset]; \
}
-#define LOAD_WPELS_LUMA(dst,src) \
+#define LOAD_WPELS_LUMA(dst, src) \
(dst) = &(src)[i_pel_offset];
-#define CLIP_MV( mv ) \
+#define CLIP_MV(mv) \
{ \
- mv[0] = x264_clip3( mv[0], h->mb.mv_min_spel[0], h->mb.mv_max_spel[0] ); \
- mv[1] = x264_clip3( mv[1], h->mb.mv_min_spel[1], h->mb.mv_max_spel[1] ); \
+ mv[0] = x264_clip3(mv[0], h->mb.mv_min_spel[0], h->mb.mv_max_spel[0]); \
+ mv[1] = x264_clip3(mv[1], h->mb.mv_min_spel[1], h->mb.mv_max_spel[1]); \
}
-#define TRY_BIDIR( mv0, mv1, penalty ) \
+#define TRY_BIDIR(mv0, mv1, penalty) \
{ \
int i_cost; \
- if( h->param.analyse.i_subpel_refine <= 1 ) \
+ if (h->param.analyse.i_subpel_refine <= 1) \
{ \
- int hpel_idx1 = (((mv0)[0]&2)>>1) + ((mv0)[1]&2); \
- int hpel_idx2 = (((mv1)[0]&2)>>1) + ((mv1)[1]&2); \
- pixel *src1 = m[0].p_fref[hpel_idx1] + ((mv0)[0]>>2) + ((mv0)[1]>>2) * m[0].i_stride[0]; \
- pixel *src2 = m[1].p_fref[hpel_idx2] + ((mv1)[0]>>2) + ((mv1)[1]>>2) * m[1].i_stride[0]; \
- h->mc.avg[PIXEL_8x8]( pix1, 16, src1, m[0].i_stride[0], src2, m[1].i_stride[0], i_bipred_weight ); \
+ int hpel_idx1 = (((mv0)[0] & 2) >> 1) + ((mv0)[1] & 2); \
+ int hpel_idx2 = (((mv1)[0] & 2) >> 1) + ((mv1)[1] & 2); \
+ pixel *src1 = m[0].p_fref[hpel_idx1] + ((mv0)[0] >> 2) + ((mv0)[1] >> 2) * m[0].i_stride[0]; \
+ pixel *src2 = m[1].p_fref[hpel_idx2] + ((mv1)[0] >> 2) + ((mv1)[1] >> 2) * m[1].i_stride[0]; \
+ h->mc.avg[PIXEL_8x8](pix1, 16, src1, m[0].i_stride[0], src2, m[1].i_stride[0], i_bipred_weight); \
} \
else \
{ \
intptr_t stride1 = 16, stride2 = 16; \
pixel *src1, *src2; \
- src1 = h->mc.get_ref( pix1, &stride1, m[0].p_fref, m[0].i_stride[0], \
- (mv0)[0], (mv0)[1], 8, 8, w ); \
- src2 = h->mc.get_ref( pix2, &stride2, m[1].p_fref, m[1].i_stride[0], \
- (mv1)[0], (mv1)[1], 8, 8, w ); \
- h->mc.avg[PIXEL_8x8]( pix1, 16, src1, stride1, src2, stride2, i_bipred_weight ); \
+ src1 = h->mc.get_ref(pix1, &stride1, m[0].p_fref, m[0].i_stride[0], \
+ (mv0)[0], (mv0)[1], 8, 8, w); \
+ src2 = h->mc.get_ref(pix2, &stride2, m[1].p_fref, m[1].i_stride[0], \
+ (mv1)[0], (mv1)[1], 8, 8, w); \
+ h->mc.avg[PIXEL_8x8](pix1, 16, src1, stride1, src2, stride2, i_bipred_weight); \
} \
i_cost = penalty * a->i_lambda + h->pixf.mbcmp[PIXEL_8x8]( \
- m[0].p_fenc[0], FENC_STRIDE, pix1, 16 ); \
- COPY2_IF_LT( i_bcost, i_cost, list_used, 3 ); \
+ m[0].p_fenc[0], FENC_STRIDE, pix1, 16); \
+ COPY2_IF_LT(i_bcost, i_cost, list_used, 3); \
}
m[0].i_pixel = PIXEL_8x8;
@@ -458,15 +488,15 @@
m[0].p_fenc[0] = h->mb.pic.p_fenc[0];
m[0].weight = w;
m[0].i_ref = 0;
- LOAD_HPELS_LUMA( m[0].p_fref, fref0->lowres );
+ LOAD_HPELS_LUMA(m[0].p_fref, fref0->lowres);
m[0].p_fref_w = m[0].p_fref[0];
- if( w[0].weightfn )
- LOAD_WPELS_LUMA( m[0].p_fref_w, fenc->weighted[0] );
+ if (w[0].weightfn)
+ LOAD_WPELS_LUMA(m[0].p_fref_w, fenc->weighted[0]);
- if( b_bidir )
+ if (b_bidir)
{
- int16_t *mvr = fref1->lowres_mvs[0][p1-p0-1][i_mb_xy];
- ALIGNED_ARRAY_8( int16_t, dmv,[2],[2] );
+ int16_t *mvr = fref1->lowres_mvs[0][p1 - p0 - 1][i_mb_xy];
+ ALIGNED_ARRAY_8(int16_t, dmv, [2], [2]);
m[1].i_pixel = PIXEL_8x8;
m[1].p_cost_mv = a->p_cost_mv;
@@ -474,126 +504,131 @@
m[1].p_fenc[0] = h->mb.pic.p_fenc[0];
m[1].i_ref = 0;
m[1].weight = x264_weight_none;
- LOAD_HPELS_LUMA( m[1].p_fref, fref1->lowres );
+ LOAD_HPELS_LUMA(m[1].p_fref, fref1->lowres);
m[1].p_fref_w = m[1].p_fref[0];
- dmv[0][0] = ( mvr[0] * dist_scale_factor + 128 ) >> 8;
- dmv[0][1] = ( mvr[1] * dist_scale_factor + 128 ) >> 8;
+ dmv[0][0] = (mvr[0] * dist_scale_factor + 128) >> 8;
+ dmv[0][1] = (mvr[1] * dist_scale_factor + 128) >> 8;
dmv[1][0] = dmv[0][0] - mvr[0];
dmv[1][1] = dmv[0][1] - mvr[1];
- CLIP_MV( dmv[0] );
- CLIP_MV( dmv[1] );
- if( h->param.analyse.i_subpel_refine <= 1 )
- M64( dmv ) &= ~0x0001000100010001ULL; /* mv & ~1 */
+ CLIP_MV(dmv[0]);
+ CLIP_MV(dmv[1]);
+ if (h->param.analyse.i_subpel_refine <= 1)
+ M64(dmv) &= ~0x0001000100010001ULL; /* mv & ~1 */
- TRY_BIDIR( dmv[0], dmv[1], 0 );
- if( M64( dmv ) )
+ TRY_BIDIR(dmv[0], dmv[1], 0);
+ if (M64(dmv))
{
int i_cost;
- h->mc.avg[PIXEL_8x8]( pix1, 16, m[0].p_fref[0], m[0].i_stride[0], m[1].p_fref[0], m[1].i_stride[0], i_bipred_weight );
- i_cost = h->pixf.mbcmp[PIXEL_8x8]( m[0].p_fenc[0], FENC_STRIDE, pix1, 16 );
- COPY2_IF_LT( i_bcost, i_cost, list_used, 3 );
+ h->mc.avg[PIXEL_8x8](pix1, 16, m[0].p_fref[0], m[0].i_stride[0], m[1].p_fref[0], m[1].i_stride[0], i_bipred_weight);
+ i_cost = h->pixf.mbcmp[PIXEL_8x8](m[0].p_fenc[0], FENC_STRIDE, pix1, 16);
+ COPY2_IF_LT(i_bcost, i_cost, list_used, 3);
}
}
- for( int l = 0; l < 1 + b_bidir; l++ )
+ for (int l = 0; l < 1 + b_bidir; l++)
{
- if( do_search[l] )
+ if (do_search[l])
{
int i_mvc = 0;
- int16_t (*fenc_mv)[2] = fenc_mvs[l];
- ALIGNED_4( int16_t mvc[4][2] );
+ int16_t(*fenc_mv)[2] = fenc_mvs[l];
+ ALIGNED_4(int16_t mvc[4][2]);
/* Reverse-order MV prediction. */
- M32( mvc[0] ) = 0;
- M32( mvc[2] ) = 0;
-#define MVC(mv) { CP32( mvc[i_mvc], mv ); i_mvc++; }
- if( i_mb_x < h->mb.i_mb_width - 1 )
- MVC( fenc_mv[1] );
- if( i_mb_y < h->mb.i_mb_height - 1 )
+ M32(mvc[0]) = 0;
+ M32(mvc[2]) = 0;
+#define MVC(mv) { CP32(mvc[i_mvc], mv); i_mvc++; \
+}
+
+ if (i_mb_x < h->mb.i_mb_width - 1)
+ MVC(fenc_mv[1]);
+ if (i_mb_y < h->mb.i_mb_height - 1)
{
- MVC( fenc_mv[i_mb_stride] );
- if( i_mb_x > 0 )
- MVC( fenc_mv[i_mb_stride-1] );
- if( i_mb_x < h->mb.i_mb_width - 1 )
- MVC( fenc_mv[i_mb_stride+1] );
+ MVC(fenc_mv[i_mb_stride]);
+ if (i_mb_x > 0)
+ MVC(fenc_mv[i_mb_stride - 1]);
+ if (i_mb_x < h->mb.i_mb_width - 1)
+ MVC(fenc_mv[i_mb_stride + 1]);
}
#undef MVC
- if( i_mvc <= 1 )
- CP32( m[l].mvp, mvc[0] );
+ if (i_mvc <= 1)
+ CP32(m[l].mvp, mvc[0]);
else
- x264_median_mv( m[l].mvp, mvc[0], mvc[1], mvc[2] );
+ x264_median_mv(m[l].mvp, mvc[0], mvc[1], mvc[2]);
/* Fast skip for cases of near-zero residual. Shortcut: don't bother except in the mv0 case,
* since anything else is likely to have enough residual to not trigger the skip. */
- if( !M32( m[l].mvp ) )
+ if (!M32(m[l].mvp))
{
- m[l].cost = h->pixf.mbcmp[PIXEL_8x8]( m[l].p_fenc[0], FENC_STRIDE, m[l].p_fref[0], m[l].i_stride[0] );
- if( m[l].cost < 64 )
+ m[l].cost = h->pixf.mbcmp[PIXEL_8x8](m[l].p_fenc[0], FENC_STRIDE, m[l].p_fref[0], m[l].i_stride[0]);
+ if (m[l].cost < 64)
{
- M32( m[l].mv ) = 0;
+ M32(m[l].mv) = 0;
goto skip_motionest;
}
}
- x264_me_search( h, &m[l], mvc, i_mvc );
+ x264_me_search(h, &m[l], mvc, i_mvc);
m[l].cost -= a->p_cost_mv[0]; // remove mvcost from skip mbs
- if( M32( m[l].mv ) )
+ if (M32(m[l].mv))
m[l].cost += 5 * a->i_lambda;
skip_motionest:
- CP32( fenc_mvs[l], m[l].mv );
+ CP32(fenc_mvs[l], m[l].mv);
*fenc_costs[l] = m[l].cost;
}
else
{
- CP32( m[l].mv, fenc_mvs[l] );
+ CP32(m[l].mv, fenc_mvs[l]);
m[l].cost = *fenc_costs[l];
}
- COPY2_IF_LT( i_bcost, m[l].cost, list_used, l+1 );
+ COPY2_IF_LT(i_bcost, m[l].cost, list_used, l + 1);
}
- if( b_bidir && ( M32( m[0].mv ) || M32( m[1].mv ) ) )
- TRY_BIDIR( m[0].mv, m[1].mv, 5 );
+ if (b_bidir && (M32(m[0].mv) || M32(m[1].mv)))
+ TRY_BIDIR(m[0].mv, m[1].mv, 5);
lowres_intra_mb:
- if( !fenc->b_intra_calculated )
+ if (!fenc->b_intra_calculated)
{
- ALIGNED_ARRAY_16( pixel, edge,[36] );
- pixel *pix = &pix1[8+FDEC_STRIDE - 1];
+ ALIGNED_ARRAY_16(pixel, edge, [36]);
+ pixel *pix = &pix1[8 + FDEC_STRIDE - 1];
pixel *src = &fenc->lowres[0][i_pel_offset - 1];
const int intra_penalty = 5 * a->i_lambda;
int satds[3];
- memcpy( pix-FDEC_STRIDE, src-i_stride, 17 * sizeof(pixel) );
- for( int i = 0; i < 8; i++ )
- pix[i*FDEC_STRIDE] = src[i*i_stride];
+ memcpy(pix - FDEC_STRIDE, src - i_stride, 17 * sizeof(pixel));
+ for (int i = 0; i < 8; i++)
+ {
+ pix[i * FDEC_STRIDE] = src[i * i_stride];
+ }
+
pix++;
- h->pixf.intra_mbcmp_x3_8x8c( h->mb.pic.p_fenc[0], pix, satds );
- int i_icost = X264_MIN3( satds[0], satds[1], satds[2] );
+ h->pixf.intra_mbcmp_x3_8x8c(h->mb.pic.p_fenc[0], pix, satds);
+ int i_icost = X264_MIN3(satds[0], satds[1], satds[2]);
- if( h->param.analyse.i_subpel_refine > 1 )
+ if (h->param.analyse.i_subpel_refine > 1)
{
- h->predict_8x8c[I_PRED_CHROMA_P]( pix );
- int satd = h->pixf.mbcmp[PIXEL_8x8]( pix, FDEC_STRIDE, h->mb.pic.p_fenc[0], FENC_STRIDE );
- i_icost = X264_MIN( i_icost, satd );
- h->predict_8x8_filter( pix, edge, ALL_NEIGHBORS, ALL_NEIGHBORS );
- for( int i = 3; i < 9; i++ )
+ h->predict_8x8c[I_PRED_CHROMA_P](pix);
+ int satd = h->pixf.mbcmp[PIXEL_8x8](pix, FDEC_STRIDE, h->mb.pic.p_fenc[0], FENC_STRIDE);
+ i_icost = X264_MIN(i_icost, satd);
+ h->predict_8x8_filter(pix, edge, ALL_NEIGHBORS, ALL_NEIGHBORS);
+ for (int i = 3; i < 9; i++)
{
- h->predict_8x8[i]( pix, edge );
- satd = h->pixf.mbcmp[PIXEL_8x8]( pix, FDEC_STRIDE, h->mb.pic.p_fenc[0], FENC_STRIDE );
- i_icost = X264_MIN( i_icost, satd );
+ h->predict_8x8[i](pix, edge);
+ satd = h->pixf.mbcmp[PIXEL_8x8](pix, FDEC_STRIDE, h->mb.pic.p_fenc[0], FENC_STRIDE);
+ i_icost = X264_MIN(i_icost, satd);
}
}
i_icost += intra_penalty + lowres_penalty;
fenc->i_intra_cost[i_mb_xy] = i_icost;
int i_icost_aq = i_icost;
- if( h->param.rc.i_aq_mode )
+ if (h->param.rc.i_aq_mode)
i_icost_aq = (i_icost_aq * fenc->i_inv_qscale_factor[i_mb_xy] + 128) >> 8;
fenc->i_row_satds[0][0][h->mb.i_mb_y] += i_icost_aq;
- if( b_frame_score_mb )
+ if (b_frame_score_mb)
{
fenc->i_cost_est[0][0] += i_icost;
fenc->i_cost_est_aq[0][0] += i_icost_aq;
@@ -601,149 +636,159 @@
}
i_bcost += lowres_penalty;
- /* forbid intra-mbs in B-frames, because it's rare and not worth checking */
- /* FIXME: Should we still forbid them now that we cache intra scores? */
- if( !b_bidir )
+ /*
+ * forbid intra-mbs in B-frames, because it's rare and not worth checking
+ * FIXME: Should we still forbid them now that we cache intra scores? */
+ if (!b_bidir)
{
int i_icost = fenc->i_intra_cost[i_mb_xy];
int b_intra = i_icost < i_bcost;
- if( b_intra )
+ if (b_intra)
{
i_bcost = i_icost;
list_used = 0;
}
- if( b_frame_score_mb )
- fenc->i_intra_mbs[b-p0] += b_intra;
+ if (b_frame_score_mb)
+ fenc->i_intra_mbs[b - p0] += b_intra;
}
/* In an I-frame, we've already added the results above in the intra section. */
- if( p0 != p1 )
+ if (p0 != p1)
{
int i_bcost_aq = i_bcost;
- if( h->param.rc.i_aq_mode )
+ if (h->param.rc.i_aq_mode)
i_bcost_aq = (i_bcost_aq * fenc->i_inv_qscale_factor[i_mb_xy] + 128) >> 8;
- fenc->i_row_satds[b-p0][p1-b][h->mb.i_mb_y] += i_bcost_aq;
- if( b_frame_score_mb )
+ fenc->i_row_satds[b - p0][p1 - b][h->mb.i_mb_y] += i_bcost_aq;
+ if (b_frame_score_mb)
{
/* Don't use AQ-weighted costs for slicetype decision, only for ratecontrol. */
- fenc->i_cost_est[b-p0][p1-b] += i_bcost;
- fenc->i_cost_est_aq[b-p0][p1-b] += i_bcost_aq;
+ fenc->i_cost_est[b - p0][p1 - b] += i_bcost;
+ fenc->i_cost_est_aq[b - p0][p1 - b] += i_bcost_aq;
}
}
- fenc->lowres_costs[b-p0][p1-b][i_mb_xy] = X264_MIN( i_bcost, LOWRES_COST_MASK ) + (list_used << LOWRES_COST_SHIFT);
+ fenc->lowres_costs[b - p0][p1 - b][i_mb_xy] = X264_MIN(i_bcost, LOWRES_COST_MASK) + (list_used << LOWRES_COST_SHIFT);
}
+
#undef TRY_BIDIR
-#define NUM_MBS\
- (h->mb.i_mb_width > 2 && h->mb.i_mb_height > 2 ?\
- (h->mb.i_mb_width - 2) * (h->mb.i_mb_height - 2) :\
- h->mb.i_mb_width * h->mb.i_mb_height)
+#define NUM_MBS \
+ (h->mb.i_mb_width > 2 && h->mb.i_mb_height > 2 ? \
+ (h->mb.i_mb_width - 2) * (h->mb.i_mb_height - 2) : \
+ h->mb.i_mb_width * h->mb.i_mb_height)
-static int x264_slicetype_frame_cost( x264_t *h, x264_mb_analysis_t *a,
- x264_frame_t **frames, int p0, int p1, int b,
- int b_intra_penalty )
+static int x264_slicetype_frame_cost(x264_t *h, x264_mb_analysis_t *a,
+ x264_frame_t **frames, int p0, int p1, int b,
+ int b_intra_penalty)
{
int i_score = 0;
int do_search[2];
const x264_weight_t *w = x264_weight_none;
+
/* Check whether we already evaluated this frame
* If we have tried this frame as P, then we have also tried
* the preceding frames as B. (is this still true?) */
/* Also check that we already calculated the row SATDs for the current frame. */
- if( frames[b]->i_cost_est[b-p0][p1-b] >= 0 && (!h->param.rc.i_vbv_buffer_size || frames[b]->i_row_satds[b-p0][p1-b][0] != -1) )
- i_score = frames[b]->i_cost_est[b-p0][p1-b];
+ if (frames[b]->i_cost_est[b - p0][p1 - b] >= 0 && (!h->param.rc.i_vbv_buffer_size || frames[b]->i_row_satds[b - p0][p1 - b][0] != -1))
+ i_score = frames[b]->i_cost_est[b - p0][p1 - b];
else
{
int dist_scale_factor = 128;
- int *row_satd = frames[b]->i_row_satds[b-p0][p1-b];
+ int *row_satd = frames[b]->i_row_satds[b - p0][p1 - b];
int *row_satd_intra = frames[b]->i_row_satds[0][0];
/* For each list, check to see whether we have lowres motion-searched this reference frame before. */
- do_search[0] = b != p0 && frames[b]->lowres_mvs[0][b-p0-1][0][0] == 0x7FFF;
- do_search[1] = b != p1 && frames[b]->lowres_mvs[1][p1-b-1][0][0] == 0x7FFF;
- if( do_search[0] )
+ do_search[0] = b != p0 && frames[b]->lowres_mvs[0][b - p0 - 1][0][0] == 0x7FFF;
+ do_search[1] = b != p1 && frames[b]->lowres_mvs[1][p1 - b - 1][0][0] == 0x7FFF;
+ if (do_search[0])
{
- if( h->param.analyse.i_weighted_pred && b == p1 )
+ if (h->param.analyse.i_weighted_pred && b == p1)
{
x264_emms();
- x264_weights_analyse( h, frames[b], frames[p0], 1 );
+ x264_weights_analyse(h, frames[b], frames[p0], 1);
w = frames[b]->weight[0];
}
- frames[b]->lowres_mvs[0][b-p0-1][0][0] = 0;
+ frames[b]->lowres_mvs[0][b - p0 - 1][0][0] = 0;
}
- if( do_search[1] ) frames[b]->lowres_mvs[1][p1-b-1][0][0] = 0;
+ if (do_search[1]) frames[b]->lowres_mvs[1][p1 - b - 1][0][0] = 0;
- if( b == p1 )
- frames[b]->i_intra_mbs[b-p0] = 0;
- if( !frames[b]->b_intra_calculated )
+ if (b == p1)
+ frames[b]->i_intra_mbs[b - p0] = 0;
+ if (!frames[b]->b_intra_calculated)
{
frames[b]->i_cost_est[0][0] = 0;
frames[b]->i_cost_est_aq[0][0] = 0;
}
- if( p1 != p0 )
- dist_scale_factor = ( ((b-p0) << 8) + ((p1-p0) >> 1) ) / (p1-p0);
+ if (p1 != p0)
+ dist_scale_factor = (((b - p0) << 8) + ((p1 - p0) >> 1)) / (p1 - p0);
- frames[b]->i_cost_est[b-p0][p1-b] = 0;
- frames[b]->i_cost_est_aq[b-p0][p1-b] = 0;
+ frames[b]->i_cost_est[b - p0][p1 - b] = 0;
+ frames[b]->i_cost_est_aq[b - p0][p1 - b] = 0;
/* Lowres lookahead goes backwards because the MVs are used as predictors in the main encode.
* This considerably improves MV prediction overall. */
/* The edge mbs seem to reduce the predictive quality of the
* whole frame's score, but are needed for a spatial distribution. */
- if( h->param.rc.b_mb_tree || h->param.rc.i_vbv_buffer_size ||
- h->mb.i_mb_width <= 2 || h->mb.i_mb_height <= 2 )
+ if (h->param.rc.b_mb_tree || h->param.rc.i_vbv_buffer_size ||
+ h->mb.i_mb_width <= 2 || h->mb.i_mb_height <= 2)
{
- for( h->mb.i_mb_y = h->mb.i_mb_height - 1; h->mb.i_mb_y >= 0; h->mb.i_mb_y-- )
+ for (h->mb.i_mb_y = h->mb.i_mb_height - 1; h->mb.i_mb_y >= 0; h->mb.i_mb_y--)
{
row_satd[h->mb.i_mb_y] = 0;
- if( !frames[b]->b_intra_calculated )
+ if (!frames[b]->b_intra_calculated)
row_satd_intra[h->mb.i_mb_y] = 0;
- for( h->mb.i_mb_x = h->mb.i_mb_width - 1; h->mb.i_mb_x >= 0; h->mb.i_mb_x-- )
- x264_slicetype_mb_cost( h, a, frames, p0, p1, b, dist_scale_factor, do_search, w );
+ for (h->mb.i_mb_x = h->mb.i_mb_width - 1; h->mb.i_mb_x >= 0; h->mb.i_mb_x--)
+ {
+ x264_slicetype_mb_cost(h, a, frames, p0, p1, b, dist_scale_factor, do_search, w);
+ }
}
}
else
{
- for( h->mb.i_mb_y = h->mb.i_mb_height - 2; h->mb.i_mb_y >= 1; h->mb.i_mb_y-- )
- for( h->mb.i_mb_x = h->mb.i_mb_width - 2; h->mb.i_mb_x >= 1; h->mb.i_mb_x-- )
- x264_slicetype_mb_cost( h, a, frames, p0, p1, b, dist_scale_factor, do_search, w );
+ for (h->mb.i_mb_y = h->mb.i_mb_height - 2; h->mb.i_mb_y >= 1; h->mb.i_mb_y--)
+ {
+ for (h->mb.i_mb_x = h->mb.i_mb_width - 2; h->mb.i_mb_x >= 1; h->mb.i_mb_x--)
+ {
+ x264_slicetype_mb_cost(h, a, frames, p0, p1, b, dist_scale_factor, do_search, w);
+ }
+ }
}
- i_score = frames[b]->i_cost_est[b-p0][p1-b];
- if( b != p1 )
+ i_score = frames[b]->i_cost_est[b - p0][p1 - b];
+ if (b != p1)
i_score = (uint64_t)i_score * 100 / (120 + h->param.i_bframe_bias);
else
frames[b]->b_intra_calculated = 1;
- frames[b]->i_cost_est[b-p0][p1-b] = i_score;
+ frames[b]->i_cost_est[b - p0][p1 - b] = i_score;
x264_emms();
}
- if( b_intra_penalty )
+ if (b_intra_penalty)
{
// arbitrary penalty for I-blocks after B-frames
int nmb = NUM_MBS;
- i_score += (uint64_t)i_score * frames[b]->i_intra_mbs[b-p0] / (nmb * 8);
+ i_score += (uint64_t)i_score * frames[b]->i_intra_mbs[b - p0] / (nmb * 8);
}
return i_score;
}
-static void x264_macroblock_tree_finish( x264_t *h, x264_frame_t *frame, float average_duration, int ref0_distance )
+static void x264_macroblock_tree_finish(x264_t *h, x264_frame_t *frame, float average_duration, int ref0_distance)
{
- int fps_factor = round( CLIP_DURATION(average_duration) / CLIP_DURATION(frame->f_duration) * 256 );
+ int fps_factor = round(CLIP_DURATION(average_duration) / CLIP_DURATION(frame->f_duration) * 256);
float weightdelta = 0.0;
- if( ref0_distance && frame->f_weighted_cost_delta[ref0_distance-1] > 0 )
- weightdelta = (1.0 - frame->f_weighted_cost_delta[ref0_distance-1]);
+
+ if (ref0_distance && frame->f_weighted_cost_delta[ref0_distance - 1] > 0)
+ weightdelta = (1.0 - frame->f_weighted_cost_delta[ref0_distance - 1]);
/* Allow the strength to be adjusted via qcompress, since the two
* concepts are very similar. */
float strength = 5.0f * (1.0f - h->param.rc.f_qcompress);
- for( int mb_index = 0; mb_index < h->mb.i_mb_count; mb_index++ )
+ for (int mb_index = 0; mb_index < h->mb.i_mb_count; mb_index++)
{
int intra_cost = (frame->i_intra_cost[mb_index] * frame->i_inv_qscale_factor[mb_index] + 128) >> 8;
- if( intra_cost )
+ if (intra_cost)
{
int propagate_cost = (frame->i_propagate_cost[mb_index] * fps_factor + 128) >> 8;
float log2_ratio = x264_log2(intra_cost + propagate_cost) - x264_log2(intra_cost) + weightdelta;
@@ -752,13 +797,14 @@
}
}
-static void x264_macroblock_tree_propagate( x264_t *h, x264_frame_t **frames, float average_duration, int p0, int p1, int b, int referenced )
+static void x264_macroblock_tree_propagate(x264_t *h, x264_frame_t **frames, float average_duration, int p0, int p1, int b, int referenced)
{
- uint16_t *ref_costs[2] = {frames[p0]->i_propagate_cost,frames[p1]->i_propagate_cost};
- int dist_scale_factor = ( ((b-p0) << 8) + ((p1-p0) >> 1) ) / (p1-p0);
- int i_bipred_weight = h->param.analyse.b_weighted_bipred ? 64 - (dist_scale_factor>>2) : 32;
- int16_t (*mvs[2])[2] = { frames[b]->lowres_mvs[0][b-p0-1], frames[b]->lowres_mvs[1][p1-b-1] };
- int bipred_weights[2] = {i_bipred_weight, 64 - i_bipred_weight};
+ uint16_t *ref_costs[2] = { frames[p0]->i_propagate_cost, frames[p1]->i_propagate_cost };
+ int dist_scale_factor = (((b - p0) << 8) + ((p1 - p0) >> 1)) / (p1 - p0);
+ int i_bipred_weight = h->param.analyse.b_weighted_bipred ? 64 - (dist_scale_factor >> 2) : 32;
+
+ int16_t(*mvs[2])[2] = { frames[b]->lowres_mvs[0][b - p0 - 1], frames[b]->lowres_mvs[1][p1 - b - 1] };
+ int bipred_weights[2] = { i_bipred_weight, 64 - i_bipred_weight };
int *buf = h->scratch_buffer;
uint16_t *propagate_cost = frames[b]->i_propagate_cost;
@@ -766,87 +812,89 @@
float fps_factor = CLIP_DURATION(frames[b]->f_duration) / CLIP_DURATION(average_duration);
/* For non-reffed frames the source costs are always zero, so just memset one row and re-use it. */
- if( !referenced )
- memset( frames[b]->i_propagate_cost, 0, h->mb.i_mb_width * sizeof(uint16_t) );
+ if (!referenced)
+ memset(frames[b]->i_propagate_cost, 0, h->mb.i_mb_width * sizeof(uint16_t));
- for( h->mb.i_mb_y = 0; h->mb.i_mb_y < h->mb.i_mb_height; h->mb.i_mb_y++ )
+ for (h->mb.i_mb_y = 0; h->mb.i_mb_y < h->mb.i_mb_height; h->mb.i_mb_y++)
{
- int mb_index = h->mb.i_mb_y*h->mb.i_mb_stride;
- h->mc.mbtree_propagate_cost( buf, propagate_cost,
- frames[b]->i_intra_cost+mb_index, frames[b]->lowres_costs[b-p0][p1-b]+mb_index,
- frames[b]->i_inv_qscale_factor+mb_index, &fps_factor, h->mb.i_mb_width );
- if( referenced )
+ int mb_index = h->mb.i_mb_y * h->mb.i_mb_stride;
+ h->mc.mbtree_propagate_cost(buf, propagate_cost,
+ frames[b]->i_intra_cost + mb_index, frames[b]->lowres_costs[b - p0][p1 - b] + mb_index,
+ frames[b]->i_inv_qscale_factor + mb_index, &fps_factor, h->mb.i_mb_width);
+ if (referenced)
propagate_cost += h->mb.i_mb_width;
- for( h->mb.i_mb_x = 0; h->mb.i_mb_x < h->mb.i_mb_width; h->mb.i_mb_x++, mb_index++ )
+ for (h->mb.i_mb_x = 0; h->mb.i_mb_x < h->mb.i_mb_width; h->mb.i_mb_x++, mb_index++)
{
int propagate_amount = buf[h->mb.i_mb_x];
/* Don't propagate for an intra block. */
- if( propagate_amount > 0 )
+ if (propagate_amount > 0)
{
/* Access width-2 bitfield. */
- int lists_used = frames[b]->lowres_costs[b-p0][p1-b][mb_index] >> LOWRES_COST_SHIFT;
+ int lists_used = frames[b]->lowres_costs[b - p0][p1 - b][mb_index] >> LOWRES_COST_SHIFT;
/* Follow the MVs to the previous frame(s). */
- for( int list = 0; list < 2; list++ )
- if( (lists_used >> list)&1 )
+ for (int list = 0; list < 2; list++)
+ {
+ if ((lists_used >> list) & 1)
{
-#define CLIP_ADD(s,x) (s) = X264_MIN((s)+(x),(1<<16)-1)
+#define CLIP_ADD(s, x) (s) = X264_MIN((s) + (x), (1 << 16) - 1)
int listamount = propagate_amount;
/* Apply bipred weighting. */
- if( lists_used == 3 )
+ if (lists_used == 3)
listamount = (listamount * bipred_weights[list] + 32) >> 6;
/* Early termination for simple case of mv0. */
- if( !M32( mvs[list][mb_index] ) )
+ if (!M32(mvs[list][mb_index]))
{
- CLIP_ADD( ref_costs[list][mb_index], listamount );
+ CLIP_ADD(ref_costs[list][mb_index], listamount);
continue;
}
int x = mvs[list][mb_index][0];
int y = mvs[list][mb_index][1];
- int mbx = (x>>5)+h->mb.i_mb_x;
- int mby = (y>>5)+h->mb.i_mb_y;
+ int mbx = (x >> 5) + h->mb.i_mb_x;
+ int mby = (y >> 5) + h->mb.i_mb_y;
int idx0 = mbx + mby * h->mb.i_mb_stride;
int idx1 = idx0 + 1;
int idx2 = idx0 + h->mb.i_mb_stride;
int idx3 = idx0 + h->mb.i_mb_stride + 1;
x &= 31;
y &= 31;
- int idx0weight = (32-y)*(32-x);
- int idx1weight = (32-y)*x;
- int idx2weight = y*(32-x);
- int idx3weight = y*x;
+ int idx0weight = (32 - y) * (32 - x);
+ int idx1weight = (32 - y) * x;
+ int idx2weight = y * (32 - x);
+ int idx3weight = y * x;
/* We could just clip the MVs, but pixels that lie outside the frame probably shouldn't
* be counted. */
- if( mbx < h->mb.i_mb_width-1 && mby < h->mb.i_mb_height-1 && mbx >= 0 && mby >= 0 )
+ if (mbx < h->mb.i_mb_width - 1 && mby < h->mb.i_mb_height - 1 && mbx >= 0 && mby >= 0)
{
- CLIP_ADD( ref_costs[list][idx0], (listamount*idx0weight+512)>>10 );
- CLIP_ADD( ref_costs[list][idx1], (listamount*idx1weight+512)>>10 );
- CLIP_ADD( ref_costs[list][idx2], (listamount*idx2weight+512)>>10 );
- CLIP_ADD( ref_costs[list][idx3], (listamount*idx3weight+512)>>10 );
+ CLIP_ADD(ref_costs[list][idx0], (listamount * idx0weight + 512) >> 10);
+ CLIP_ADD(ref_costs[list][idx1], (listamount * idx1weight + 512) >> 10);
+ CLIP_ADD(ref_costs[list][idx2], (listamount * idx2weight + 512) >> 10);
+ CLIP_ADD(ref_costs[list][idx3], (listamount * idx3weight + 512) >> 10);
}
else /* Check offsets individually */
{
- if( mbx < h->mb.i_mb_width && mby < h->mb.i_mb_height && mbx >= 0 && mby >= 0 )
- CLIP_ADD( ref_costs[list][idx0], (listamount*idx0weight+512)>>10 );
- if( mbx+1 < h->mb.i_mb_width && mby < h->mb.i_mb_height && mbx+1 >= 0 && mby >= 0 )
- CLIP_ADD( ref_costs[list][idx1], (listamount*idx1weight+512)>>10 );
- if( mbx < h->mb.i_mb_width && mby+1 < h->mb.i_mb_height && mbx >= 0 && mby+1 >= 0 )
- CLIP_ADD( ref_costs[list][idx2], (listamount*idx2weight+512)>>10 );
- if( mbx+1 < h->mb.i_mb_width && mby+1 < h->mb.i_mb_height && mbx+1 >= 0 && mby+1 >= 0 )
- CLIP_ADD( ref_costs[list][idx3], (listamount*idx3weight+512)>>10 );
+ if (mbx < h->mb.i_mb_width && mby < h->mb.i_mb_height && mbx >= 0 && mby >= 0)
+ CLIP_ADD(ref_costs[list][idx0], (listamount * idx0weight + 512) >> 10);
+ if (mbx + 1 < h->mb.i_mb_width && mby < h->mb.i_mb_height && mbx + 1 >= 0 && mby >= 0)
+ CLIP_ADD(ref_costs[list][idx1], (listamount * idx1weight + 512) >> 10);
+ if (mbx < h->mb.i_mb_width && mby + 1 < h->mb.i_mb_height && mbx >= 0 && mby + 1 >= 0)
+ CLIP_ADD(ref_costs[list][idx2], (listamount * idx2weight + 512) >> 10);
+ if (mbx + 1 < h->mb.i_mb_width && mby + 1 < h->mb.i_mb_height && mbx + 1 >= 0 && mby + 1 >= 0)
+ CLIP_ADD(ref_costs[list][idx3], (listamount * idx3weight + 512) >> 10);
}
}
+ }
}
}
}
- if( h->param.rc.i_vbv_buffer_size && h->param.rc.i_lookahead && referenced )
- x264_macroblock_tree_finish( h, frames[b], average_duration, b == p1 ? b - p0 : 0 );
+ if (h->param.rc.i_vbv_buffer_size && h->param.rc.i_lookahead && referenced)
+ x264_macroblock_tree_finish(h, frames[b], average_duration, b == p1 ? b - p0 : 0);
}
-static void x264_macroblock_tree( x264_t *h, x264_mb_analysis_t *a, x264_frame_t **frames, int num_frames, int b_intra )
+static void x264_macroblock_tree(x264_t *h, x264_mb_analysis_t *a, x264_frame_t **frames, int num_frames, int b_intra)
{
int idx = !b_intra;
int last_nonb, cur_nonb = 1;
@@ -854,112 +902,122 @@
x264_emms();
float total_duration = 0.0;
- for( int j = 0; j <= num_frames; j++ )
+ for (int j = 0; j <= num_frames; j++)
+ {
total_duration += frames[j]->f_duration;
+ }
+
float average_duration = total_duration / (num_frames + 1);
int i = num_frames;
- if( b_intra )
- x264_slicetype_frame_cost( h, a, frames, 0, 0, 0, 0 );
+ if (b_intra)
+ x264_slicetype_frame_cost(h, a, frames, 0, 0, 0, 0);
- while( i > 0 && frames[i]->i_type == X264_TYPE_B )
+ while (i > 0 && frames[i]->i_type == X264_TYPE_B)
+ {
i--;
+ }
+
last_nonb = i;
/* Lookaheadless MB-tree is not a theoretically distinct case; the same extrapolation could
* be applied to the end of a lookahead buffer of any size. However, it's most needed when
* lookahead=0, so that's what's currently implemented. */
- if( !h->param.rc.i_lookahead )
+ if (!h->param.rc.i_lookahead)
{
- if( b_intra )
+ if (b_intra)
{
- memset( frames[0]->i_propagate_cost, 0, h->mb.i_mb_count * sizeof(uint16_t) );
- memcpy( frames[0]->f_qp_offset, frames[0]->f_qp_offset_aq, h->mb.i_mb_count * sizeof(float) );
+ memset(frames[0]->i_propagate_cost, 0, h->mb.i_mb_count * sizeof(uint16_t));
+ memcpy(frames[0]->f_qp_offset, frames[0]->f_qp_offset_aq, h->mb.i_mb_count * sizeof(float));
return;
}
- XCHG( uint16_t*, frames[last_nonb]->i_propagate_cost, frames[0]->i_propagate_cost );
- memset( frames[0]->i_propagate_cost, 0, h->mb.i_mb_count * sizeof(uint16_t) );
+ XCHG(uint16_t*, frames[last_nonb]->i_propagate_cost, frames[0]->i_propagate_cost);
+ memset(frames[0]->i_propagate_cost, 0, h->mb.i_mb_count * sizeof(uint16_t));
}
else
{
- if( last_nonb < idx )
+ if (last_nonb < idx)
return;
- memset( frames[last_nonb]->i_propagate_cost, 0, h->mb.i_mb_count * sizeof(uint16_t) );
+ memset(frames[last_nonb]->i_propagate_cost, 0, h->mb.i_mb_count * sizeof(uint16_t));
}
- while( i-- > idx )
+ while (i-- > idx)
{
cur_nonb = i;
- while( frames[cur_nonb]->i_type == X264_TYPE_B && cur_nonb > 0 )
+ while (frames[cur_nonb]->i_type == X264_TYPE_B && cur_nonb > 0)
+ {
cur_nonb--;
- if( cur_nonb < idx )
+ }
+
+ if (cur_nonb < idx)
break;
- x264_slicetype_frame_cost( h, a, frames, cur_nonb, last_nonb, last_nonb, 0 );
- memset( frames[cur_nonb]->i_propagate_cost, 0, h->mb.i_mb_count * sizeof(uint16_t) );
+ x264_slicetype_frame_cost(h, a, frames, cur_nonb, last_nonb, last_nonb, 0);
+ memset(frames[cur_nonb]->i_propagate_cost, 0, h->mb.i_mb_count * sizeof(uint16_t));
bframes = last_nonb - cur_nonb - 1;
- if( h->param.i_bframe_pyramid && bframes > 1 )
+ if (h->param.i_bframe_pyramid && bframes > 1)
{
- int middle = (bframes + 1)/2 + cur_nonb;
- x264_slicetype_frame_cost( h, a, frames, cur_nonb, last_nonb, middle, 0 );
- memset( frames[middle]->i_propagate_cost, 0, h->mb.i_mb_count * sizeof(uint16_t) );
- while( i > cur_nonb )
+ int middle = (bframes + 1) / 2 + cur_nonb;
+ x264_slicetype_frame_cost(h, a, frames, cur_nonb, last_nonb, middle, 0);
+ memset(frames[middle]->i_propagate_cost, 0, h->mb.i_mb_count * sizeof(uint16_t));
+ while (i > cur_nonb)
{
int p0 = i > middle ? middle : cur_nonb;
int p1 = i < middle ? middle : last_nonb;
- if( i != middle )
+ if (i != middle)
{
- x264_slicetype_frame_cost( h, a, frames, p0, p1, i, 0 );
- x264_macroblock_tree_propagate( h, frames, average_duration, p0, p1, i, 0 );
+ x264_slicetype_frame_cost(h, a, frames, p0, p1, i, 0);
+ x264_macroblock_tree_propagate(h, frames, average_duration, p0, p1, i, 0);
}
i--;
}
- x264_macroblock_tree_propagate( h, frames, average_duration, cur_nonb, last_nonb, middle, 1 );
+
+ x264_macroblock_tree_propagate(h, frames, average_duration, cur_nonb, last_nonb, middle, 1);
}
else
{
- while( i > cur_nonb )
+ while (i > cur_nonb)
{
- x264_slicetype_frame_cost( h, a, frames, cur_nonb, last_nonb, i, 0 );
- x264_macroblock_tree_propagate( h, frames, average_duration, cur_nonb, last_nonb, i, 0 );
+ x264_slicetype_frame_cost(h, a, frames, cur_nonb, last_nonb, i, 0);
+ x264_macroblock_tree_propagate(h, frames, average_duration, cur_nonb, last_nonb, i, 0);
i--;
}
}
- x264_macroblock_tree_propagate( h, frames, average_duration, cur_nonb, last_nonb, last_nonb, 1 );
+ x264_macroblock_tree_propagate(h, frames, average_duration, cur_nonb, last_nonb, last_nonb, 1);
last_nonb = cur_nonb;
}
- if( !h->param.rc.i_lookahead )
+ if (!h->param.rc.i_lookahead)
{
- x264_slicetype_frame_cost( h, a, frames, 0, last_nonb, last_nonb, 0 );
- x264_macroblock_tree_propagate( h, frames, average_duration, 0, last_nonb, last_nonb, 1 );
- XCHG( uint16_t*, frames[last_nonb]->i_propagate_cost, frames[0]->i_propagate_cost );
+ x264_slicetype_frame_cost(h, a, frames, 0, last_nonb, last_nonb, 0);
+ x264_macroblock_tree_propagate(h, frames, average_duration, 0, last_nonb, last_nonb, 1);
+ XCHG(uint16_t*, frames[last_nonb]->i_propagate_cost, frames[0]->i_propagate_cost);
}
- x264_macroblock_tree_finish( h, frames[last_nonb], average_duration, last_nonb );
- if( h->param.i_bframe_pyramid && bframes > 1 && !h->param.rc.i_vbv_buffer_size )
- x264_macroblock_tree_finish( h, frames[last_nonb+(bframes+1)/2], average_duration, 0 );
+ x264_macroblock_tree_finish(h, frames[last_nonb], average_duration, last_nonb);
+ if (h->param.i_bframe_pyramid && bframes > 1 && !h->param.rc.i_vbv_buffer_size)
+ x264_macroblock_tree_finish(h, frames[last_nonb + (bframes + 1) / 2], average_duration, 0);
}
-static void x264_calculate_durations( x264_t *h, x264_frame_t *cur_frame, x264_frame_t *prev_frame, int64_t *i_cpb_delay, int64_t *i_coded_fields )
+static void x264_calculate_durations(x264_t *h, x264_frame_t *cur_frame, x264_frame_t *prev_frame, int64_t *i_cpb_delay, int64_t *i_coded_fields)
{
cur_frame->i_cpb_delay = *i_cpb_delay;
cur_frame->i_dpb_output_delay = cur_frame->i_field_cnt - *i_coded_fields;
// add a correction term for frame reordering
- cur_frame->i_dpb_output_delay += h->sps->vui.i_num_reorder_frames*2;
+ cur_frame->i_dpb_output_delay += h->sps->vui.i_num_reorder_frames * 2;
// fix possible negative dpb_output_delay because of pulldown changes and reordering
- if( cur_frame->i_dpb_output_delay < 0 )
+ if (cur_frame->i_dpb_output_delay < 0)
{
cur_frame->i_cpb_delay += cur_frame->i_dpb_output_delay;
cur_frame->i_dpb_output_delay = 0;
- if( prev_frame )
+ if (prev_frame)
prev_frame->i_cpb_duration += cur_frame->i_dpb_output_delay;
}
// don't reset cpb delay for IDR frames when using intra-refresh
- if( cur_frame->b_keyframe && !h->param.b_intra_refresh )
+ if (cur_frame->b_keyframe && !h->param.b_intra_refresh)
*i_cpb_delay = 0;
*i_cpb_delay += cur_frame->i_duration;
@@ -967,67 +1025,79 @@
cur_frame->i_cpb_duration = cur_frame->i_duration;
}
-static int x264_slicetype_path_cost( x264_t *h, x264_mb_analysis_t *a, x264_frame_t **frames, char *path, int threshold )
+static int x264_slicetype_path_cost(x264_t *h, x264_mb_analysis_t *a, x264_frame_t **frames, char *path, int threshold)
{
int loc = 1;
int cost = 0;
int cur_p = 0;
+
path--; /* Since the 1st path element is really the second frame */
- while( path[loc] )
+ while (path[loc])
{
int next_p = loc;
/* Find the location of the next P-frame. */
- while( path[next_p] != 'P' )
+ while (path[next_p] != 'P')
+ {
next_p++;
+ }
/* Add the cost of the P-frame found above */
- cost += x264_slicetype_frame_cost( h, a, frames, cur_p, next_p, next_p, 0 );
+ cost += x264_slicetype_frame_cost(h, a, frames, cur_p, next_p, next_p, 0);
/* Early terminate if the cost we have found is larger than the best path cost so far */
- if( cost > threshold )
+ if (cost > threshold)
break;
- if( h->param.i_bframe_pyramid && next_p - cur_p > 2 )
+ if (h->param.i_bframe_pyramid && next_p - cur_p > 2)
{
- int middle = cur_p + (next_p - cur_p)/2;
- cost += x264_slicetype_frame_cost( h, a, frames, cur_p, next_p, middle, 0 );
- for( int next_b = loc; next_b < middle && cost < threshold; next_b++ )
- cost += x264_slicetype_frame_cost( h, a, frames, cur_p, middle, next_b, 0 );
- for( int next_b = middle+1; next_b < next_p && cost < threshold; next_b++ )
- cost += x264_slicetype_frame_cost( h, a, frames, middle, next_p, next_b, 0 );
+ int middle = cur_p + (next_p - cur_p) / 2;
+ cost += x264_slicetype_frame_cost(h, a, frames, cur_p, next_p, middle, 0);
+ for (int next_b = loc; next_b < middle && cost < threshold; next_b++)
+ {
+ cost += x264_slicetype_frame_cost(h, a, frames, cur_p, middle, next_b, 0);
+ }
+
+ for (int next_b = middle + 1; next_b < next_p && cost < threshold; next_b++)
+ {
+ cost += x264_slicetype_frame_cost(h, a, frames, middle, next_p, next_b, 0);
+ }
}
else
- for( int next_b = loc; next_b < next_p && cost < threshold; next_b++ )
- cost += x264_slicetype_frame_cost( h, a, frames, cur_p, next_p, next_b, 0 );
+ for (int next_b = loc; next_b < next_p && cost < threshold; next_b++)
+ {
+ cost += x264_slicetype_frame_cost(h, a, frames, cur_p, next_p, next_b, 0);
+ }
loc = next_p + 1;
cur_p = next_p;
}
+
return cost;
}
/* Viterbi/trellis slicetype decision algorithm. */
+
/* Uses strings due to the fact that the speed of the control functions is
negligible compared to the cost of running slicetype_frame_cost, and because
it makes debugging easier. */
-static void x264_slicetype_path( x264_t *h, x264_mb_analysis_t *a, x264_frame_t **frames, int length, char (*best_paths)[X264_LOOKAHEAD_MAX+1] )
+static void x264_slicetype_path(x264_t *h, x264_mb_analysis_t *a, x264_frame_t **frames, int length, char(*best_paths)[X264_LOOKAHEAD_MAX + 1])
{
- char paths[2][X264_LOOKAHEAD_MAX+1];
- int num_paths = X264_MIN( h->param.i_bframe+1, length );
+ char paths[2][X264_LOOKAHEAD_MAX + 1];
+ int num_paths = X264_MIN(h->param.i_bframe + 1, length);
int best_cost = COST_MAX;
int idx = 0;
/* Iterate over all currently possible paths */
- for( int path = 0; path < num_paths; path++ )
+ for (int path = 0; path < num_paths; path++)
{
/* Add suffixes to the current path */
int len = length - (path + 1);
- memcpy( paths[idx], best_paths[len % (X264_BFRAME_MAX+1)], len );
- memset( paths[idx]+len, 'B', path );
- strcpy( paths[idx]+len+path, "P" );
+ memcpy(paths[idx], best_paths[len % (X264_BFRAME_MAX + 1)], len);
+ memset(paths[idx] + len, 'B', path);
+ strcpy(paths[idx] + len + path, "P");
/* Calculate the actual cost of the current path */
- int cost = x264_slicetype_path_cost( h, a, frames, paths[idx], best_cost );
- if( cost < best_cost )
+ int cost = x264_slicetype_path_cost(h, a, frames, paths[idx], best_cost);
+ if (cost < best_cost)
{
best_cost = cost;
idx ^= 1;
@@ -1035,21 +1105,21 @@
}
/* Store the best path. */
- memcpy( best_paths[length % (X264_BFRAME_MAX+1)], paths[idx^1], length );
+ memcpy(best_paths[length % (X264_BFRAME_MAX + 1)], paths[idx ^ 1], length);
}
-static int scenecut_internal( x264_t *h, x264_mb_analysis_t *a, x264_frame_t **frames, int p0, int p1, int real_scenecut )
+static int scenecut_internal(x264_t *h, x264_mb_analysis_t *a, x264_frame_t **frames, int p0, int p1, int real_scenecut)
{
x264_frame_t *frame = frames[p1];
/* Don't do scenecuts on the right view of a frame-packed video. */
- if( real_scenecut && h->param.i_frame_packing == 5 && (frame->i_frame&1) )
+ if (real_scenecut && h->param.i_frame_packing == 5 && (frame->i_frame & 1))
return 0;
- x264_slicetype_frame_cost( h, a, frames, p0, p1, p1, 0 );
+ x264_slicetype_frame_cost(h, a, frames, p0, p1, p1, 0);
int icost = frame->i_cost_est[0][0];
- int pcost = frame->i_cost_est[p1-p0][0];
+ int pcost = frame->i_cost_est[p1 - p0][0];
float f_bias;
int i_gop_size = frame->i_frame - h->lookahead->i_last_keyframe;
float f_thresh_max = h->param.i_scenecut_threshold / 100.0;
@@ -1057,114 +1127,123 @@
float f_thresh_min = f_thresh_max * 0.25;
int res;
- if( h->param.i_keyint_min == h->param.i_keyint_max )
+ if (h->param.i_keyint_min == h->param.i_keyint_max)
f_thresh_min = f_thresh_max;
- if( i_gop_size <= h->param.i_keyint_min / 4 || h->param.b_intra_refresh )
+ if (i_gop_size <= h->param.i_keyint_min / 4 || h->param.b_intra_refresh)
f_bias = f_thresh_min / 4;
- else if( i_gop_size <= h->param.i_keyint_min )
+ else if (i_gop_size <= h->param.i_keyint_min)
f_bias = f_thresh_min * i_gop_size / h->param.i_keyint_min;
else
{
f_bias = f_thresh_min
- + ( f_thresh_max - f_thresh_min )
- * ( i_gop_size - h->param.i_keyint_min )
- / ( h->param.i_keyint_max - h->param.i_keyint_min );
+ + (f_thresh_max - f_thresh_min)
+ * (i_gop_size - h->param.i_keyint_min)
+ / (h->param.i_keyint_max - h->param.i_keyint_min);
}
res = pcost >= (1.0 - f_bias) * icost;
- if( res && real_scenecut )
+ if (res && real_scenecut)
{
- int imb = frame->i_intra_mbs[p1-p0];
+ int imb = frame->i_intra_mbs[p1 - p0];
int pmb = NUM_MBS - imb;
- x264_log( h, X264_LOG_DEBUG, "scene cut at %d Icost:%d Pcost:%d ratio:%.4f bias:%.4f gop:%d (imb:%d pmb:%d)\n",
- frame->i_frame,
- icost, pcost, 1. - (double)pcost / icost,
- f_bias, i_gop_size, imb, pmb );
+ x264_log(h, X264_LOG_DEBUG, "scene cut at %d Icost:%d Pcost:%d ratio:%.4f bias:%.4f gop:%d (imb:%d pmb:%d)\n",
+ frame->i_frame,
+ icost, pcost, 1. - (double)pcost / icost,
+ f_bias, i_gop_size, imb, pmb);
}
return res;
}
-static int scenecut( x264_t *h, x264_mb_analysis_t *a, x264_frame_t **frames, int p0, int p1, int real_scenecut, int num_frames, int i_max_search )
+static int scenecut(x264_t *h, x264_mb_analysis_t *a, x264_frame_t **frames, int p0, int p1, int real_scenecut, int num_frames, int i_max_search)
{
/* Only do analysis during a normal scenecut check. */
- if( real_scenecut && h->param.i_bframe )
+ if (real_scenecut && h->param.i_bframe)
{
int origmaxp1 = p0 + 1;
/* Look ahead to avoid coding short flashes as scenecuts. */
- if( h->param.i_bframe_adaptive == X264_B_ADAPT_TRELLIS )
+ if (h->param.i_bframe_adaptive == X264_B_ADAPT_TRELLIS)
/* Don't analyse any more frames than the trellis would have covered. */
origmaxp1 += h->param.i_bframe;
else
origmaxp1++;
- int maxp1 = X264_MIN( origmaxp1, num_frames );
+ int maxp1 = X264_MIN(origmaxp1, num_frames);
/* Where A and B are scenes: AAAAAABBBAAAAAA
* If BBB is shorter than (maxp1-p0), it is detected as a flash
* and not considered a scenecut. */
- for( int curp1 = p1; curp1 <= maxp1; curp1++ )
- if( !scenecut_internal( h, a, frames, p0, curp1, 0 ) )
+ for (int curp1 = p1; curp1 <= maxp1; curp1++)
+ {
+ if (!scenecut_internal(h, a, frames, p0, curp1, 0))
/* Any frame in between p0 and cur_p1 cannot be a real scenecut. */
- for( int i = curp1; i > p0; i-- )
+ for (int i = curp1; i > p0; i--)
+ {
frames[i]->b_scenecut = 0;
+ }
+ }
/* Where A-F are scenes: AAAAABBCCDDEEFFFFFF
* If each of BB ... EE are shorter than (maxp1-p0), they are
* detected as flashes and not considered scenecuts.
* Instead, the first F frame becomes a scenecut.
* If the video ends before F, no frame becomes a scenecut. */
- for( int curp0 = p0; curp0 <= maxp1; curp0++ )
- if( origmaxp1 > i_max_search || (curp0 < maxp1 && scenecut_internal( h, a, frames, curp0, maxp1, 0 )) )
+ for (int curp0 = p0; curp0 <= maxp1; curp0++)
+ {
+ if (origmaxp1 > i_max_search || (curp0 < maxp1 && scenecut_internal(h, a, frames, curp0, maxp1, 0)))
/* If cur_p0 is the p0 of a scenecut, it cannot be the p1 of a scenecut. */
- frames[curp0]->b_scenecut = 0;
+ frames[curp0]->b_scenecut = 0;
+ }
}
/* Ignore frames that are part of a flash, i.e. cannot be real scenecuts. */
- if( !frames[p1]->b_scenecut )
+ if (!frames[p1]->b_scenecut)
return 0;
- return scenecut_internal( h, a, frames, p0, p1, real_scenecut );
+ return scenecut_internal(h, a, frames, p0, p1, real_scenecut);
}
-void x264_slicetype_analyse( x264_t *h, int keyframe )
+void x264_slicetype_analyse(x264_t *h, int keyframe)
{
x264_mb_analysis_t a;
- x264_frame_t *frames[X264_LOOKAHEAD_MAX+3] = { NULL, };
+ x264_frame_t *frames[X264_LOOKAHEAD_MAX + 3] = { NULL, };
int num_frames, orig_num_frames, keyint_limit, framecnt;
int i_mb_count = NUM_MBS;
int cost1p0, cost2p0, cost1b1, cost2p1;
- int i_max_search = X264_MIN( h->lookahead->next.i_size, X264_LOOKAHEAD_MAX );
+ int i_max_search = X264_MIN(h->lookahead->next.i_size, X264_LOOKAHEAD_MAX);
int vbv_lookahead = h->param.rc.i_vbv_buffer_size && h->param.rc.i_lookahead;
- if( h->param.b_deterministic )
- i_max_search = X264_MIN( i_max_search, h->lookahead->i_slicetype_length + !keyframe );
- assert( h->frames.b_have_lowres );
+ if (h->param.b_deterministic)
+ i_max_search = X264_MIN(i_max_search, h->lookahead->i_slicetype_length + !keyframe);
- if( !h->lookahead->last_nonb )
+ assert(h->frames.b_have_lowres);
+
+ if (!h->lookahead->last_nonb)
return;
frames[0] = h->lookahead->last_nonb;
- for( framecnt = 0; framecnt < i_max_search && h->lookahead->next.list[framecnt]->i_type == X264_TYPE_AUTO; framecnt++ )
- frames[framecnt+1] = h->lookahead->next.list[framecnt];
+ for (framecnt = 0; framecnt < i_max_search && h->lookahead->next.list[framecnt]->i_type == X264_TYPE_AUTO; framecnt++)
+ {
+ frames[framecnt + 1] = h->lookahead->next.list[framecnt];
+ }
- x264_lowres_context_init( h, &a );
+ x264_lowres_context_init(h, &a);
- if( !framecnt )
+ if (!framecnt)
{
- if( h->param.rc.b_mb_tree )
- x264_macroblock_tree( h, &a, frames, 0, keyframe );
+ if (h->param.rc.b_mb_tree)
+ x264_macroblock_tree(h, &a, frames, 0, keyframe);
return;
}
keyint_limit = h->param.i_keyint_max - frames[0]->i_frame + h->lookahead->i_last_keyframe - 1;
- orig_num_frames = num_frames = h->param.b_intra_refresh ? framecnt : X264_MIN( framecnt, keyint_limit );
+ orig_num_frames = num_frames = h->param.b_intra_refresh ? framecnt : X264_MIN(framecnt, keyint_limit);
/* This is important psy-wise: if we have a non-scenecut keyframe,
* there will be significant visual artifacts if the frames just before
* go down in quality due to being referenced less, despite it being
* more RD-optimal. */
- if( (h->param.analyse.b_psy && h->param.rc.b_mb_tree) || vbv_lookahead )
+ if ((h->param.analyse.b_psy && h->param.rc.b_mb_tree) || vbv_lookahead)
num_frames = framecnt;
- else if( h->param.b_open_gop && num_frames < framecnt )
+ else if (h->param.b_open_gop && num_frames < framecnt)
num_frames++;
- else if( num_frames == 0 )
+ else if (num_frames == 0)
{
frames[1]->i_type = X264_TYPE_I;
return;
@@ -1173,144 +1252,163 @@
int num_bframes = 0;
int num_analysed_frames = num_frames;
int reset_start;
- if( h->param.i_scenecut_threshold && scenecut( h, &a, frames, 0, 1, 1, orig_num_frames, i_max_search ) )
+ if (h->param.i_scenecut_threshold && scenecut(h, &a, frames, 0, 1, 1, orig_num_frames, i_max_search))
{
frames[1]->i_type = X264_TYPE_I;
return;
}
- if( h->param.i_bframe )
+ if (h->param.i_bframe)
{
- if( h->param.i_bframe_adaptive == X264_B_ADAPT_TRELLIS )
+ if (h->param.i_bframe_adaptive == X264_B_ADAPT_TRELLIS)
{
- if( num_frames > 1 )
+ if (num_frames > 1)
{
- char best_paths[X264_BFRAME_MAX+1][X264_LOOKAHEAD_MAX+1] = {"","P"};
- int best_path_index = num_frames % (X264_BFRAME_MAX+1);
+ char best_paths[X264_BFRAME_MAX + 1][X264_LOOKAHEAD_MAX + 1] = { "", "P" };
+ int best_path_index = num_frames % (X264_BFRAME_MAX + 1);
/* Perform the frametype analysis. */
- for( int j = 2; j <= num_frames; j++ )
- x264_slicetype_path( h, &a, frames, j, best_paths );
+ for (int j = 2; j <= num_frames; j++)
+ {
+ x264_slicetype_path(h, &a, frames, j, best_paths);
+ }
- num_bframes = strspn( best_paths[best_path_index], "B" );
+ num_bframes = strspn(best_paths[best_path_index], "B");
/* Load the results of the analysis into the frame types. */
- for( int j = 1; j < num_frames; j++ )
- frames[j]->i_type = best_paths[best_path_index][j-1] == 'B' ? X264_TYPE_B : X264_TYPE_P;
+ for (int j = 1; j < num_frames; j++)
+ {
+ frames[j]->i_type = best_paths[best_path_index][j - 1] == 'B' ? X264_TYPE_B : X264_TYPE_P;
+ }
}
frames[num_frames]->i_type = X264_TYPE_P;
}
- else if( h->param.i_bframe_adaptive == X264_B_ADAPT_FAST )
+ else if (h->param.i_bframe_adaptive == X264_B_ADAPT_FAST)
{
- for( int i = 0; i <= num_frames-2; )
+ for (int i = 0; i <= num_frames - 2; )
{
- cost2p1 = x264_slicetype_frame_cost( h, &a, frames, i+0, i+2, i+2, 1 );
- if( frames[i+2]->i_intra_mbs[2] > i_mb_count / 2 )
+ cost2p1 = x264_slicetype_frame_cost(h, &a, frames, i + 0, i + 2, i + 2, 1);
+ if (frames[i + 2]->i_intra_mbs[2] > i_mb_count / 2)
{
- frames[i+1]->i_type = X264_TYPE_P;
- frames[i+2]->i_type = X264_TYPE_P;
+ frames[i + 1]->i_type = X264_TYPE_P;
+ frames[i + 2]->i_type = X264_TYPE_P;
i += 2;
continue;
}
- cost1b1 = x264_slicetype_frame_cost( h, &a, frames, i+0, i+2, i+1, 0 );
- cost1p0 = x264_slicetype_frame_cost( h, &a, frames, i+0, i+1, i+1, 0 );
- cost2p0 = x264_slicetype_frame_cost( h, &a, frames, i+1, i+2, i+2, 0 );
+ cost1b1 = x264_slicetype_frame_cost(h, &a, frames, i + 0, i + 2, i + 1, 0);
+ cost1p0 = x264_slicetype_frame_cost(h, &a, frames, i + 0, i + 1, i + 1, 0);
+ cost2p0 = x264_slicetype_frame_cost(h, &a, frames, i + 1, i + 2, i + 2, 0);
- if( cost1p0 + cost2p0 < cost1b1 + cost2p1 )
+ if (cost1p0 + cost2p0 < cost1b1 + cost2p1)
{
- frames[i+1]->i_type = X264_TYPE_P;
+ frames[i + 1]->i_type = X264_TYPE_P;
i += 1;
continue;
}
// arbitrary and untuned
- #define INTER_THRESH 300
- #define P_SENS_BIAS (50 - h->param.i_bframe_bias)
- frames[i+1]->i_type = X264_TYPE_B;
+#define INTER_THRESH 300
+#define P_SENS_BIAS (50 - h->param.i_bframe_bias)
+ frames[i + 1]->i_type = X264_TYPE_B;
int j;
- for( j = i+2; j <= X264_MIN( i+h->param.i_bframe, num_frames-1 ); j++ )
+ for (j = i + 2; j <= X264_MIN(i + h->param.i_bframe, num_frames - 1); j++)
{
- int pthresh = X264_MAX(INTER_THRESH - P_SENS_BIAS * (j-i-1), INTER_THRESH/10);
- int pcost = x264_slicetype_frame_cost( h, &a, frames, i+0, j+1, j+1, 1 );
- if( pcost > pthresh*i_mb_count || frames[j+1]->i_intra_mbs[j-i+1] > i_mb_count/3 )
+ int pthresh = X264_MAX(INTER_THRESH - P_SENS_BIAS * (j - i - 1), INTER_THRESH / 10);
+ int pcost = x264_slicetype_frame_cost(h, &a, frames, i + 0, j + 1, j + 1, 1);
+ if (pcost > pthresh * i_mb_count || frames[j + 1]->i_intra_mbs[j - i + 1] > i_mb_count / 3)
break;
frames[j]->i_type = X264_TYPE_B;
}
+
frames[j]->i_type = X264_TYPE_P;
i = j;
}
frames[num_frames]->i_type = X264_TYPE_P;
num_bframes = 0;
- while( num_bframes < num_frames && frames[num_bframes+1]->i_type == X264_TYPE_B )
+ while (num_bframes < num_frames && frames[num_bframes + 1]->i_type == X264_TYPE_B)
+ {
num_bframes++;
+ }
}
else
{
- num_bframes = X264_MIN(num_frames-1, h->param.i_bframe);
- for( int j = 1; j < num_frames; j++ )
- frames[j]->i_type = (j%(num_bframes+1)) ? X264_TYPE_B : X264_TYPE_P;
+ num_bframes = X264_MIN(num_frames - 1, h->param.i_bframe);
+ for (int j = 1; j < num_frames; j++)
+ {
+ frames[j]->i_type = (j % (num_bframes + 1)) ? X264_TYPE_B : X264_TYPE_P;
+ }
+
frames[num_frames]->i_type = X264_TYPE_P;
}
/* Check scenecut on the first minigop. */
- for( int j = 1; j < num_bframes+1; j++ )
- if( h->param.i_scenecut_threshold && scenecut( h, &a, frames, j, j+1, 0, orig_num_frames, i_max_search ) )
+ for (int j = 1; j < num_bframes + 1; j++)
+ {
+ if (h->param.i_scenecut_threshold && scenecut(h, &a, frames, j, j + 1, 0, orig_num_frames, i_max_search))
{
frames[j]->i_type = X264_TYPE_P;
num_analysed_frames = j;
break;
}
+ }
- reset_start = keyframe ? 1 : X264_MIN( num_bframes+2, num_analysed_frames+1 );
+ reset_start = keyframe ? 1 : X264_MIN(num_bframes + 2, num_analysed_frames + 1);
}
else
{
- for( int j = 1; j <= num_frames; j++ )
+ for (int j = 1; j <= num_frames; j++)
+ {
frames[j]->i_type = X264_TYPE_P;
+ }
+
reset_start = !keyframe + 1;
num_bframes = 0;
}
/* Perform the actual macroblock tree analysis.
* Don't go farther than the maximum keyframe interval; this helps in short GOPs. */
- if( h->param.rc.b_mb_tree )
- x264_macroblock_tree( h, &a, frames, X264_MIN(num_frames, h->param.i_keyint_max), keyframe );
+ if (h->param.rc.b_mb_tree)
+ x264_macroblock_tree(h, &a, frames, X264_MIN(num_frames, h->param.i_keyint_max), keyframe);
/* Enforce keyframe limit. */
- if( !h->param.b_intra_refresh )
- for( int i = keyint_limit+1; i <= num_frames; i += h->param.i_keyint_max )
+ if (!h->param.b_intra_refresh)
+ for (int i = keyint_limit + 1; i <= num_frames; i += h->param.i_keyint_max)
{
frames[i]->i_type = X264_TYPE_I;
- reset_start = X264_MIN( reset_start, i+1 );
- if( h->param.b_open_gop && h->param.b_bluray_compat )
- while( IS_X264_TYPE_B( frames[i-1]->i_type ) )
+ reset_start = X264_MIN(reset_start, i + 1);
+ if (h->param.b_open_gop && h->param.b_bluray_compat)
+ while (IS_X264_TYPE_B(frames[i - 1]->i_type))
+ {
i--;
+ }
}
/* Restore frametypes for all frames that haven't actually been decided yet. */
- for( int j = reset_start; j <= num_frames; j++ )
+ for (int j = reset_start; j <= num_frames; j++)
+ {
frames[j]->i_type = X264_TYPE_AUTO;
+ }
}
-void x264_slicetype_decide( x264_t *h )
+void x264_slicetype_decide(x264_t *h)
{
- x264_frame_t *frames[X264_BFRAME_MAX+2];
+ x264_frame_t *frames[X264_BFRAME_MAX + 2];
x264_frame_t *frm;
int bframes;
int brefs;
- if( !h->lookahead->next.i_size )
+ if (!h->lookahead->next.i_size)
return;
int lookahead_size = h->lookahead->next.i_size;
- for( int i = 0; i < h->lookahead->next.i_size; i++ )
+ for (int i = 0; i < h->lookahead->next.i_size; i++)
{
- if( h->param.b_vfr_input )
+ if (h->param.b_vfr_input)
{
- if( lookahead_size-- > 1 )
- h->lookahead->next.list[i]->i_duration = 2 * (h->lookahead->next.list[i+1]->i_pts - h->lookahead->next.list[i]->i_pts);
+ if (lookahead_size-- > 1)
+ h->lookahead->next.list[i]->i_duration = 2 * (h->lookahead->next.list[i + 1]->i_pts - h->lookahead->next.list[i]->i_pts);
else
h->lookahead->next.list[i]->i_duration = h->i_prev_duration;
}
@@ -1318,203 +1416,211 @@
h->lookahead->next.list[i]->i_duration = delta_tfi_divisor[h->lookahead->next.list[i]->i_pic_struct];
h->i_prev_duration = h->lookahead->next.list[i]->i_duration;
h->lookahead->next.list[i]->f_duration = (double)h->lookahead->next.list[i]->i_duration
- * h->sps->vui.i_num_units_in_tick
- / h->sps->vui.i_time_scale;
+ * h->sps->vui.i_num_units_in_tick
+ / h->sps->vui.i_time_scale;
- if( h->lookahead->next.list[i]->i_frame > h->i_disp_fields_last_frame && lookahead_size > 0 )
+ if (h->lookahead->next.list[i]->i_frame > h->i_disp_fields_last_frame && lookahead_size > 0)
{
h->lookahead->next.list[i]->i_field_cnt = h->i_disp_fields;
h->i_disp_fields += h->lookahead->next.list[i]->i_duration;
h->i_disp_fields_last_frame = h->lookahead->next.list[i]->i_frame;
}
- else if( lookahead_size == 0 )
+ else if (lookahead_size == 0)
{
h->lookahead->next.list[i]->i_field_cnt = h->i_disp_fields;
h->lookahead->next.list[i]->i_duration = h->i_prev_duration;
}
}
- if( h->param.rc.b_stat_read )
+ if (h->param.rc.b_stat_read)
{
/* Use the frame types from the first pass */
- for( int i = 0; i < h->lookahead->next.i_size; i++ )
+ for (int i = 0; i < h->lookahead->next.i_size; i++)
+ {
h->lookahead->next.list[i]->i_type =
- x264_ratecontrol_slice_type( h, h->lookahead->next.list[i]->i_frame );
+ x264_ratecontrol_slice_type(h, h->lookahead->next.list[i]->i_frame);
+ }
}
- else if( (h->param.i_bframe && h->param.i_bframe_adaptive)
+ else if ((h->param.i_bframe && h->param.i_bframe_adaptive)
|| h->param.i_scenecut_threshold
|| h->param.rc.b_mb_tree
- || (h->param.rc.i_vbv_buffer_size && h->param.rc.i_lookahead) )
- x264_slicetype_analyse( h, 0 );
+ || (h->param.rc.i_vbv_buffer_size && h->param.rc.i_lookahead))
+ x264_slicetype_analyse(h, 0);
- for( bframes = 0, brefs = 0;; bframes++ )
+ for (bframes = 0, brefs = 0;; bframes++)
{
frm = h->lookahead->next.list[bframes];
- if( frm->i_type == X264_TYPE_BREF && h->param.i_bframe_pyramid < X264_B_PYRAMID_NORMAL &&
- brefs == h->param.i_bframe_pyramid )
+ if (frm->i_type == X264_TYPE_BREF && h->param.i_bframe_pyramid < X264_B_PYRAMID_NORMAL &&
+ brefs == h->param.i_bframe_pyramid)
{
frm->i_type = X264_TYPE_B;
- x264_log( h, X264_LOG_WARNING, "B-ref at frame %d incompatible with B-pyramid %s \n",
- frm->i_frame, x264_b_pyramid_names[h->param.i_bframe_pyramid] );
+ x264_log(h, X264_LOG_WARNING, "B-ref at frame %d incompatible with B-pyramid %s \n",
+ frm->i_frame, x264_b_pyramid_names[h->param.i_bframe_pyramid]);
}
+
/* pyramid with multiple B-refs needs a big enough dpb that the preceding P-frame stays available.
smaller dpb could be supported by smart enough use of mmco, but it's easier just to forbid it. */
- else if( frm->i_type == X264_TYPE_BREF && h->param.i_bframe_pyramid == X264_B_PYRAMID_NORMAL &&
- brefs && h->param.i_frame_reference <= (brefs+3) )
+ else if (frm->i_type == X264_TYPE_BREF && h->param.i_bframe_pyramid == X264_B_PYRAMID_NORMAL &&
+ brefs && h->param.i_frame_reference <= (brefs + 3))
{
frm->i_type = X264_TYPE_B;
- x264_log( h, X264_LOG_WARNING, "B-ref at frame %d incompatible with B-pyramid %s and %d reference frames\n",
- frm->i_frame, x264_b_pyramid_names[h->param.i_bframe_pyramid], h->param.i_frame_reference );
+ x264_log(h, X264_LOG_WARNING, "B-ref at frame %d incompatible with B-pyramid %s and %d reference frames\n",
+ frm->i_frame, x264_b_pyramid_names[h->param.i_bframe_pyramid], h->param.i_frame_reference);
}
- if( frm->i_type == X264_TYPE_KEYFRAME )
+ if (frm->i_type == X264_TYPE_KEYFRAME)
frm->i_type = h->param.b_open_gop ? X264_TYPE_I : X264_TYPE_IDR;
/* Limit GOP size */
- if( (!h->param.b_intra_refresh || frm->i_frame == 0) && frm->i_frame - h->lookahead->i_last_keyframe >= h->param.i_keyint_max )
+ if ((!h->param.b_intra_refresh || frm->i_frame == 0) && frm->i_frame - h->lookahead->i_last_keyframe >= h->param.i_keyint_max)
{
- if( frm->i_type == X264_TYPE_AUTO || frm->i_type == X264_TYPE_I )
+ if (frm->i_type == X264_TYPE_AUTO || frm->i_type == X264_TYPE_I)
frm->i_type = h->param.b_open_gop && h->lookahead->i_last_keyframe >= 0 ? X264_TYPE_I : X264_TYPE_IDR;
int warn = frm->i_type != X264_TYPE_IDR;
- if( warn && h->param.b_open_gop )
+ if (warn && h->param.b_open_gop)
warn &= frm->i_type != X264_TYPE_I;
- if( warn )
+ if (warn)
{
- x264_log( h, X264_LOG_WARNING, "specified frame type (%d) at %d is not compatible with keyframe interval\n", frm->i_type, frm->i_frame );
+ x264_log(h, X264_LOG_WARNING, "specified frame type (%d) at %d is not compatible with keyframe interval\n", frm->i_type, frm->i_frame);
frm->i_type = h->param.b_open_gop && h->lookahead->i_last_keyframe >= 0 ? X264_TYPE_I : X264_TYPE_IDR;
}
}
- if( frm->i_type == X264_TYPE_I && frm->i_frame - h->lookahead->i_last_keyframe >= h->param.i_keyint_min )
+ if (frm->i_type == X264_TYPE_I && frm->i_frame - h->lookahead->i_last_keyframe >= h->param.i_keyint_min)
{
- if( h->param.b_open_gop )
+ if (h->param.b_open_gop)
{
h->lookahead->i_last_keyframe = frm->i_frame; // Use display order
- if( h->param.b_bluray_compat )
+ if (h->param.b_bluray_compat)
h->lookahead->i_last_keyframe -= bframes; // Use bluray order
frm->b_keyframe = 1;
}
else
frm->i_type = X264_TYPE_IDR;
}
- if( frm->i_type == X264_TYPE_IDR )
+ if (frm->i_type == X264_TYPE_IDR)
{
/* Close GOP */
h->lookahead->i_last_keyframe = frm->i_frame;
frm->b_keyframe = 1;
- if( bframes > 0 )
+ if (bframes > 0)
{
bframes--;
h->lookahead->next.list[bframes]->i_type = X264_TYPE_P;
}
}
- if( bframes == h->param.i_bframe ||
- !h->lookahead->next.list[bframes+1] )
+ if (bframes == h->param.i_bframe ||
+ !h->lookahead->next.list[bframes + 1])
{
- if( IS_X264_TYPE_B( frm->i_type ) )
- x264_log( h, X264_LOG_WARNING, "specified frame type is not compatible with max B-frames\n" );
- if( frm->i_type == X264_TYPE_AUTO
- || IS_X264_TYPE_B( frm->i_type ) )
+ if (IS_X264_TYPE_B(frm->i_type))
+ x264_log(h, X264_LOG_WARNING, "specified frame type is not compatible with max B-frames\n");
+ if (frm->i_type == X264_TYPE_AUTO
+ || IS_X264_TYPE_B(frm->i_type))
frm->i_type = X264_TYPE_P;
}
- if( frm->i_type == X264_TYPE_BREF )
+ if (frm->i_type == X264_TYPE_BREF)
brefs++;
- if( frm->i_type == X264_TYPE_AUTO )
+ if (frm->i_type == X264_TYPE_AUTO)
frm->i_type = X264_TYPE_B;
- else if( !IS_X264_TYPE_B( frm->i_type ) ) break;
+ else if (!IS_X264_TYPE_B(frm->i_type))
+ break;
}
- if( bframes )
- h->lookahead->next.list[bframes-1]->b_last_minigop_bframe = 1;
+ if (bframes)
+ h->lookahead->next.list[bframes - 1]->b_last_minigop_bframe = 1;
h->lookahead->next.list[bframes]->i_bframes = bframes;
/* insert a bref into the sequence */
- if( h->param.i_bframe_pyramid && bframes > 1 && !brefs )
+ if (h->param.i_bframe_pyramid && bframes > 1 && !brefs)
{
- h->lookahead->next.list[bframes/2]->i_type = X264_TYPE_BREF;
+ h->lookahead->next.list[bframes / 2]->i_type = X264_TYPE_BREF;
brefs++;
}
/* calculate the frame costs ahead of time for x264_rc_analyse_slice while we still have lowres */
- if( h->param.rc.i_rc_method != X264_RC_CQP )
+ if (h->param.rc.i_rc_method != X264_RC_CQP)
{
x264_mb_analysis_t a;
int p0, p1, b;
p1 = b = bframes + 1;
- x264_lowres_context_init( h, &a );
+ x264_lowres_context_init(h, &a);
frames[0] = h->lookahead->last_nonb;
- memcpy( &frames[1], h->lookahead->next.list, (bframes+1) * sizeof(x264_frame_t*) );
- if( IS_X264_TYPE_I( h->lookahead->next.list[bframes]->i_type ) )
+ memcpy(&frames[1], h->lookahead->next.list, (bframes + 1) * sizeof(x264_frame_t*));
+ if (IS_X264_TYPE_I(h->lookahead->next.list[bframes]->i_type))
p0 = bframes + 1;
else // P
p0 = 0;
- x264_slicetype_frame_cost( h, &a, frames, p0, p1, b, 0 );
+ x264_slicetype_frame_cost(h, &a, frames, p0, p1, b, 0);
- if( (p0 != p1 || bframes) && h->param.rc.i_vbv_buffer_size )
+ if ((p0 != p1 || bframes) && h->param.rc.i_vbv_buffer_size)
{
/* We need the intra costs for row SATDs. */
- x264_slicetype_frame_cost( h, &a, frames, b, b, b, 0 );
+ x264_slicetype_frame_cost(h, &a, frames, b, b, b, 0);
/* We need B-frame costs for row SATDs. */
p0 = 0;
- for( b = 1; b <= bframes; b++ )
+ for (b = 1; b <= bframes; b++)
{
- if( frames[b]->i_type == X264_TYPE_B )
- for( p1 = b; frames[p1]->i_type == X264_TYPE_B; )
+ if (frames[b]->i_type == X264_TYPE_B)
+ for (p1 = b; frames[p1]->i_type == X264_TYPE_B; )
+ {
p1++;
+ }
+
else
p1 = bframes + 1;
- x264_slicetype_frame_cost( h, &a, frames, p0, p1, b, 0 );
- if( frames[b]->i_type == X264_TYPE_BREF )
+ x264_slicetype_frame_cost(h, &a, frames, p0, p1, b, 0);
+ if (frames[b]->i_type == X264_TYPE_BREF)
p0 = b;
}
}
}
/* Analyse for weighted P frames */
- if( !h->param.rc.b_stat_read && h->lookahead->next.list[bframes]->i_type == X264_TYPE_P
- && h->param.analyse.i_weighted_pred >= X264_WEIGHTP_SIMPLE )
+ if (!h->param.rc.b_stat_read && h->lookahead->next.list[bframes]->i_type == X264_TYPE_P
+ && h->param.analyse.i_weighted_pred >= X264_WEIGHTP_SIMPLE)
{
x264_emms();
- x264_weights_analyse( h, h->lookahead->next.list[bframes], h->lookahead->last_nonb, 0 );
+ x264_weights_analyse(h, h->lookahead->next.list[bframes], h->lookahead->last_nonb, 0);
}
/* shift sequence to coded order.
use a small temporary list to avoid shifting the entire next buffer around */
int i_coded = h->lookahead->next.list[0]->i_frame;
- if( bframes )
+ if (bframes)
{
- int idx_list[] = { brefs+1, 1 };
- for( int i = 0; i < bframes; i++ )
+ int idx_list[] = { brefs + 1, 1 };
+ for (int i = 0; i < bframes; i++)
{
int idx = idx_list[h->lookahead->next.list[i]->i_type == X264_TYPE_BREF]++;
frames[idx] = h->lookahead->next.list[i];
frames[idx]->i_reordered_pts = h->lookahead->next.list[idx]->i_pts;
}
+
frames[0] = h->lookahead->next.list[bframes];
frames[0]->i_reordered_pts = h->lookahead->next.list[0]->i_pts;
- memcpy( h->lookahead->next.list, frames, (bframes+1) * sizeof(x264_frame_t*) );
+ memcpy(h->lookahead->next.list, frames, (bframes + 1) * sizeof(x264_frame_t*));
}
- for( int i = 0; i <= bframes; i++ )
+ for (int i = 0; i <= bframes; i++)
{
h->lookahead->next.list[i]->i_coded = i_coded++;
- if( i )
+ if (i)
{
- x264_calculate_durations( h, h->lookahead->next.list[i], h->lookahead->next.list[i-1], &h->i_cpb_delay, &h->i_coded_fields );
- h->lookahead->next.list[0]->f_planned_cpb_duration[i-1] = (double)h->lookahead->next.list[i-1]->i_cpb_duration *
- h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
+ x264_calculate_durations(h, h->lookahead->next.list[i], h->lookahead->next.list[i - 1], &h->i_cpb_delay, &h->i_coded_fields);
+ h->lookahead->next.list[0]->f_planned_cpb_duration[i - 1] = (double)h->lookahead->next.list[i - 1]->i_cpb_duration *
+ h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
}
else
- x264_calculate_durations( h, h->lookahead->next.list[i], NULL, &h->i_cpb_delay, &h->i_coded_fields );
+ x264_calculate_durations(h, h->lookahead->next.list[i], NULL, &h->i_cpb_delay, &h->i_coded_fields);
h->lookahead->next.list[0]->f_planned_cpb_duration[i] = (double)h->lookahead->next.list[i]->i_cpb_duration *
- h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
+ h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
}
}
More information about the x265-devel
mailing list