[x265] refine intra neighbors
Steve Borho
steve at borho.org
Wed Dec 31 16:54:48 CET 2014
On 12/23, Satoshi Nakagawa wrote:
> CIP is picture level flag, and typically OFF.
>
> Separate functions are to simply non-CIP path.
>
> Code size is small and *CIP() functions will not be loaded to cache.
I generally agree with Satoshi on this. We only allow CIP to be
configured globally so having seperate functions for CIP and non-CIP
would be beneficial, if it was done at the appropriate level to avoid
code replication.
I see now a version of the patch was pushed using templates, which seems
like a fine compromise. If anything, perhaps the isAboveAvailable<>()
method and its peers should be merged into one function since they are
always called as a group in series.
> # HG changeset patch
> # User Satoshi Nakagawa <nakagawa424 at oki.com>
> # Date 1419313799 -32400
> # Tue Dec 23 14:49:59 2014 +0900
> # Node ID 6b59452a17d75c42c1750d47e2318c8da80c39fb
> # Parent 8d2f418829c894c25da79daa861f16c61e5060d7
> refine intra neighbors
>
> diff -r 8d2f418829c8 -r 6b59452a17d7 source/common/common.h
> --- a/source/common/common.h Sat Dec 20 21:27:14 2014 +0900
> +++ b/source/common/common.h Tue Dec 23 14:49:59 2014 +0900
> @@ -163,6 +163,9 @@
> template<typename T>
> inline T x265_max(T a, T b) { return a > b ? a : b; }
>
> +template<typename T>
> +inline T x265_clip3(T minVal, T maxVal, T a) { return x265_min(x265_max(minVal, a), maxVal); }
We have too many clip functions now. These need to be coalesced down to
just one.
> typedef int16_t coeff_t; // transform coefficient
>
> #define X265_MIN(a, b) ((a) < (b) ? (a) : (b))
> diff -r 8d2f418829c8 -r 6b59452a17d7 source/common/cudata.cpp
> --- a/source/common/cudata.cpp Sat Dec 20 21:27:14 2014 +0900
> +++ b/source/common/cudata.cpp Tue Dec 23 14:49:59 2014 +0900
> @@ -608,7 +608,7 @@
> {
> if (curPartUnitIdx > g_rasterToZscan[absPartIdxRT - s_numPartInCUSize + 1])
> {
> - uint32_t absZorderCUIdx = g_zscanToRaster[m_absIdxInCTU] + (1 << (m_log2CUSize[0] - LOG2_UNIT_SIZE)) - 1;
> + uint32_t absZorderCUIdx = g_zscanToRaster[m_absIdxInCTU] + (1 << (m_log2CUSize[0] - LOG2_UNIT_SIZE)) - 1;
> arPartUnitIdx = g_rasterToZscan[absPartIdxRT - s_numPartInCUSize + 1];
> if (isEqualRowOrCol(absPartIdxRT, absZorderCUIdx, s_numPartInCUSize))
> return m_encData->getPicCTU(m_cuAddr);
> @@ -689,8 +689,6 @@
> return NULL;
> }
> blPartUnitIdx = g_rasterToZscan[absPartIdxLB + (1 + partUnitOffset) * s_numPartInCUSize - 1];
> - if (!m_cuLeft || !m_cuLeft->m_slice)
> - return NULL;
> return m_cuLeft;
> }
>
> @@ -723,8 +721,6 @@
> return NULL;
> }
> arPartUnitIdx = g_rasterToZscan[absPartIdxRT + NUM_CU_PARTITIONS - s_numPartInCUSize + partUnitOffset];
> - if (!m_cuAbove || !m_cuAbove->m_slice)
> - return NULL;
> return m_cuAbove;
> }
>
> @@ -732,8 +728,6 @@
> return NULL;
>
> arPartUnitIdx = g_rasterToZscan[NUM_CU_PARTITIONS - s_numPartInCUSize + partUnitOffset - 1];
> - if ((m_cuAboveRight == NULL || m_cuAboveRight->m_slice == NULL || (m_cuAboveRight->m_cuAddr) > m_cuAddr))
> - return NULL;
> return m_cuAboveRight;
> }
>
> @@ -904,7 +898,7 @@
> tuDepthRange[0] = m_slice->m_sps->quadtreeTULog2MinSize;
> tuDepthRange[1] = m_slice->m_sps->quadtreeTULog2MaxSize;
>
> - tuDepthRange[0] = X265_MAX(tuDepthRange[0], X265_MIN(log2CUSize - (m_slice->m_sps->quadtreeTUMaxDepthIntra - 1 + splitFlag), tuDepthRange[1]));
> + tuDepthRange[0] = x265_clip3(tuDepthRange[0], tuDepthRange[1], log2CUSize - (m_slice->m_sps->quadtreeTUMaxDepthIntra - 1 + splitFlag));
> }
>
> void CUData::getInterTUQtDepthRange(uint32_t tuDepthRange[2], uint32_t absPartIdx) const
> @@ -916,7 +910,7 @@
> tuDepthRange[0] = m_slice->m_sps->quadtreeTULog2MinSize;
> tuDepthRange[1] = m_slice->m_sps->quadtreeTULog2MaxSize;
>
> - tuDepthRange[0] = X265_MAX(tuDepthRange[0], X265_MIN(log2CUSize - (quadtreeTUMaxDepth - 1 + splitFlag), tuDepthRange[1]));
> + tuDepthRange[0] = x265_clip3(tuDepthRange[0], tuDepthRange[1], log2CUSize - (quadtreeTUMaxDepth - 1 + splitFlag));
> }
>
> uint32_t CUData::getCtxSkipFlag(uint32_t absPartIdx) const
> @@ -1363,14 +1357,6 @@
> return outPartIdxRB;
> }
>
> -void CUData::deriveLeftRightTopIdxAdi(uint32_t& outPartIdxLT, uint32_t& outPartIdxRT, uint32_t partOffset, uint32_t partDepth) const
> -{
> - uint32_t numPartInWidth = 1 << (m_log2CUSize[0] - LOG2_UNIT_SIZE - partDepth);
> -
> - outPartIdxLT = m_absIdxInCTU + partOffset;
> - outPartIdxRT = g_rasterToZscan[g_zscanToRaster[outPartIdxLT] + numPartInWidth - 1];
> -}
> -
> bool CUData::hasEqualMotion(uint32_t absPartIdx, const CUData& candCU, uint32_t candAbsPartIdx) const
> {
> if (m_interDir[absPartIdx] != candCU.m_interDir[candAbsPartIdx])
> diff -r 8d2f418829c8 -r 6b59452a17d7 source/common/cudata.h
> --- a/source/common/cudata.h Sat Dec 20 21:27:14 2014 +0900
> +++ b/source/common/cudata.h Tue Dec 23 14:49:59 2014 +0900
> @@ -212,7 +212,6 @@
>
> void getAllowedChromaDir(uint32_t absPartIdx, uint32_t* modeList) const;
> int getIntraDirLumaPredictor(uint32_t absPartIdx, uint32_t* intraDirPred) const;
> - void deriveLeftRightTopIdxAdi(uint32_t& partIdxLT, uint32_t& partIdxRT, uint32_t partOffset, uint32_t partDepth) const;
>
> uint32_t getSCUAddr() const { return (m_cuAddr << g_maxFullDepth * 2) + m_absIdxInCTU; }
> uint32_t getCtxSplitFlag(uint32_t absPartIdx, uint32_t depth) const;
> diff -r 8d2f418829c8 -r 6b59452a17d7 source/common/predict.cpp
> --- a/source/common/predict.cpp Sat Dec 20 21:27:14 2014 +0900
> +++ b/source/common/predict.cpp Tue Dec 23 14:49:59 2014 +0900
> @@ -654,11 +654,8 @@
> }
> }
>
> -void Predict::initAdiPattern(const CUData& cu, const CUGeom& cuGeom, uint32_t absPartIdx, uint32_t partDepth, int dirMode)
> +void Predict::initAdiPattern(const CUData& cu, const CUGeom& cuGeom, uint32_t absPartIdx, const IntraNeighbors& intraNeighbors, int dirMode)
> {
> - IntraNeighbors intraNeighbors;
> - initIntraNeighbors(cu, absPartIdx, partDepth, true, &intraNeighbors);
> -
> pixel* adiBuf = m_predBuf;
> pixel* refAbove = m_refAbove;
> pixel* refLeft = m_refLeft;
> @@ -700,12 +697,12 @@
> int refTL = refAbove[0];
> int refTR = refAbove[trSize2];
> bStrongSmoothing = (abs(refBL + refTL - 2 * refLeft[trSize]) < threshold &&
> - abs(refTL + refTR - 2 * refAbove[trSize]) < threshold);
> + abs(refTL + refTR - 2 * refAbove[trSize]) < threshold);
>
> if (bStrongSmoothing)
> {
> // bilinear interpolation
> - const int shift = 5 + 1; // intraNeighbors.log2TrSize + 1;
> + const int shift = 5 + 1; // log2TrSize + 1;
> int init = (refTL << shift) + tuSize;
> int delta;
>
> @@ -738,10 +735,8 @@
> }
> }
>
> -void Predict::initAdiPatternChroma(const CUData& cu, const CUGeom& cuGeom, uint32_t absPartIdx, uint32_t partDepth, uint32_t chromaId)
> +void Predict::initAdiPatternChroma(const CUData& cu, const CUGeom& cuGeom, uint32_t absPartIdx, const IntraNeighbors& intraNeighbors, uint32_t chromaId)
> {
> - IntraNeighbors intraNeighbors;
> - initIntraNeighbors(cu, absPartIdx, partDepth, false, &intraNeighbors);
> uint32_t tuSize = intraNeighbors.tuSize;
>
> const pixel* adiOrigin = cu.m_encData->m_reconPic->getChromaAddr(chromaId, cu.m_cuAddr, cuGeom.encodeIdx + absPartIdx);
> @@ -751,9 +746,9 @@
> fillReferenceSamples(adiOrigin, picStride, adiRef, intraNeighbors);
> }
>
> -void Predict::initIntraNeighbors(const CUData& cu, uint32_t absPartIdx, uint32_t partDepth, bool isLuma, IntraNeighbors *intraNeighbors)
> +void Predict::initIntraNeighbors(const CUData& cu, uint32_t absPartIdx, uint32_t tuDepth, bool isLuma, IntraNeighbors *intraNeighbors)
> {
> - uint32_t log2TrSize = cu.m_log2CUSize[0] - partDepth;
> + uint32_t log2TrSize = cu.m_log2CUSize[0] - tuDepth;
> int log2UnitWidth = LOG2_UNIT_SIZE;
> int log2UnitHeight = LOG2_UNIT_SIZE;
>
> @@ -764,12 +759,12 @@
> log2UnitHeight -= cu.m_vChromaShift;
> }
>
> - int numIntraNeighbor = 0;
> + int numIntraNeighbor;
> bool* bNeighborFlags = intraNeighbors->bNeighborFlags;
>
> - uint32_t partIdxLT, partIdxRT, partIdxLB;
> -
> - cu.deriveLeftRightTopIdxAdi(partIdxLT, partIdxRT, absPartIdx, partDepth);
> + uint32_t numPartInWidth = 1 << (cu.m_log2CUSize[0] - LOG2_UNIT_SIZE - tuDepth);
> + uint32_t partIdxLT = cu.m_absIdxInCTU + absPartIdx;
> + uint32_t partIdxRT = g_rasterToZscan[g_zscanToRaster[partIdxLT] + numPartInWidth - 1];
>
> uint32_t tuSize = 1 << log2TrSize;
> int tuWidthInUnits = tuSize >> log2UnitWidth;
> @@ -777,14 +772,26 @@
> int aboveUnits = tuWidthInUnits << 1;
> int leftUnits = tuHeightInUnits << 1;
> int partIdxStride = cu.m_slice->m_sps->numPartInCUSize;
> - partIdxLB = g_rasterToZscan[g_zscanToRaster[partIdxLT] + ((tuHeightInUnits - 1) * partIdxStride)];
> + uint32_t partIdxLB = g_rasterToZscan[g_zscanToRaster[partIdxLT] + ((tuHeightInUnits - 1) * partIdxStride)];
>
> - bNeighborFlags[leftUnits] = isAboveLeftAvailable(cu, partIdxLT);
> - numIntraNeighbor += (int)(bNeighborFlags[leftUnits]);
> - numIntraNeighbor += isAboveAvailable(cu, partIdxLT, partIdxRT, (bNeighborFlags + leftUnits + 1));
> - numIntraNeighbor += isAboveRightAvailable(cu, partIdxLT, partIdxRT, (bNeighborFlags + leftUnits + 1 + tuWidthInUnits));
> - numIntraNeighbor += isLeftAvailable(cu, partIdxLT, partIdxLB, (bNeighborFlags + leftUnits - 1));
> - numIntraNeighbor += isBelowLeftAvailable(cu, partIdxLT, partIdxLB, (bNeighborFlags + leftUnits - 1 - tuHeightInUnits));
> + if (cu.m_slice->isIntra() || !cu.m_slice->m_pps->bConstrainedIntraPred)
> + {
> + bNeighborFlags[leftUnits] = isAboveLeftAvailable(cu, partIdxLT);
> + numIntraNeighbor = (int)(bNeighborFlags[leftUnits]);
> + numIntraNeighbor += isAboveAvailable(cu, partIdxLT, partIdxRT, bNeighborFlags + leftUnits + 1);
> + numIntraNeighbor += isAboveRightAvailable(cu, partIdxRT, bNeighborFlags + leftUnits + 1 + tuWidthInUnits, tuWidthInUnits);
> + numIntraNeighbor += isLeftAvailable(cu, partIdxLT, partIdxLB, bNeighborFlags + leftUnits - 1);
> + numIntraNeighbor += isBelowLeftAvailable(cu, partIdxLB, bNeighborFlags + tuHeightInUnits - 1, tuHeightInUnits);
> + }
> + else
> + {
> + bNeighborFlags[leftUnits] = isAboveLeftAvailableCIP(cu, partIdxLT);
> + numIntraNeighbor = (int)(bNeighborFlags[leftUnits]);
> + numIntraNeighbor += isAboveAvailableCIP(cu, partIdxLT, partIdxRT, bNeighborFlags + leftUnits + 1);
> + numIntraNeighbor += isAboveRightAvailableCIP(cu, partIdxRT, bNeighborFlags + leftUnits + 1 + tuWidthInUnits, tuWidthInUnits);
> + numIntraNeighbor += isLeftAvailableCIP(cu, partIdxLT, partIdxLB, bNeighborFlags + leftUnits - 1);
> + numIntraNeighbor += isBelowLeftAvailableCIP(cu, partIdxLB, bNeighborFlags + tuHeightInUnits - 1, tuHeightInUnits);
> + }
>
> intraNeighbors->numIntraNeighbor = numIntraNeighbor;
> intraNeighbors->totalUnits = aboveUnits + leftUnits + 1;
> @@ -793,7 +800,6 @@
> intraNeighbors->unitWidth = 1 << log2UnitWidth;
> intraNeighbors->unitHeight = 1 << log2UnitHeight;
> intraNeighbors->tuSize = tuSize;
> - intraNeighbors->log2TrSize = log2TrSize;
> }
>
> void Predict::fillReferenceSamples(const pixel* adiOrigin, intptr_t picStride, pixel* adiRef, const IntraNeighbors& intraNeighbors)
> @@ -953,33 +959,27 @@
> uint32_t partAboveLeft;
> const CUData* cuAboveLeft = cu.getPUAboveLeft(partAboveLeft, partIdxLT);
>
> - if (!cu.m_slice->m_pps->bConstrainedIntraPred)
> - return cuAboveLeft ? true : false;
> - else
> - return cuAboveLeft && cuAboveLeft->isIntra(partAboveLeft);
> + return !!cuAboveLeft;
> }
>
> int Predict::isAboveAvailable(const CUData& cu, uint32_t partIdxLT, uint32_t partIdxRT, bool* bValidFlags)
> {
> const uint32_t rasterPartBegin = g_zscanToRaster[partIdxLT];
> - const uint32_t rasterPartEnd = g_zscanToRaster[partIdxRT] + 1;
> + const uint32_t rasterPartEnd = g_zscanToRaster[partIdxRT];
> const uint32_t idxStep = 1;
> - bool* validFlagPtr = bValidFlags;
> int numIntra = 0;
>
> - for (uint32_t rasterPart = rasterPartBegin; rasterPart < rasterPartEnd; rasterPart += idxStep)
> + for (uint32_t rasterPart = rasterPartBegin; rasterPart <= rasterPartEnd; rasterPart += idxStep, bValidFlags++)
> {
> uint32_t partAbove;
> const CUData* cuAbove = cu.getPUAbove(partAbove, g_rasterToZscan[rasterPart]);
> - if (cuAbove && (!cu.m_slice->m_pps->bConstrainedIntraPred || cuAbove->isIntra(partAbove)))
> + if (cuAbove)
> {
> numIntra++;
> - *validFlagPtr = true;
> + *bValidFlags = true;
> }
> else
> - *validFlagPtr = false;
> -
> - validFlagPtr++;
> + *bValidFlags = false;
> }
>
> return numIntra;
> @@ -988,73 +988,156 @@
> int Predict::isLeftAvailable(const CUData& cu, uint32_t partIdxLT, uint32_t partIdxLB, bool* bValidFlags)
> {
> const uint32_t rasterPartBegin = g_zscanToRaster[partIdxLT];
> - const uint32_t rasterPartEnd = g_zscanToRaster[partIdxLB] + 1;
> + const uint32_t rasterPartEnd = g_zscanToRaster[partIdxLB];
> const uint32_t idxStep = cu.m_slice->m_sps->numPartInCUSize;
> - bool* validFlagPtr = bValidFlags;
> int numIntra = 0;
>
> - for (uint32_t rasterPart = rasterPartBegin; rasterPart < rasterPartEnd; rasterPart += idxStep)
> + for (uint32_t rasterPart = rasterPartBegin; rasterPart <= rasterPartEnd; rasterPart += idxStep, bValidFlags--) // opposite direction
> {
> uint32_t partLeft;
> const CUData* cuLeft = cu.getPULeft(partLeft, g_rasterToZscan[rasterPart]);
> - if (cuLeft && (!cu.m_slice->m_pps->bConstrainedIntraPred || cuLeft->isIntra(partLeft)))
> + if (cuLeft)
> {
> numIntra++;
> - *validFlagPtr = true;
> + *bValidFlags = true;
> }
> else
> - *validFlagPtr = false;
> -
> - validFlagPtr--; // opposite direction
> + *bValidFlags = false;
> }
>
> return numIntra;
> }
>
> -int Predict::isAboveRightAvailable(const CUData& cu, uint32_t partIdxLT, uint32_t partIdxRT, bool* bValidFlags)
> +int Predict::isAboveRightAvailable(const CUData& cu, uint32_t partIdxRT, bool* bValidFlags, uint32_t numUnits)
> {
> - const uint32_t numUnitsInPU = g_zscanToRaster[partIdxRT] - g_zscanToRaster[partIdxLT] + 1;
> - bool* validFlagPtr = bValidFlags;
> int numIntra = 0;
>
> - for (uint32_t offset = 1; offset <= numUnitsInPU; offset++)
> + for (uint32_t offset = 1; offset <= numUnits; offset++, bValidFlags++)
> {
> uint32_t partAboveRight;
> const CUData* cuAboveRight = cu.getPUAboveRightAdi(partAboveRight, partIdxRT, offset);
> - if (cuAboveRight && (!cu.m_slice->m_pps->bConstrainedIntraPred || cuAboveRight->isIntra(partAboveRight)))
> + if (cuAboveRight)
> {
> numIntra++;
> - *validFlagPtr = true;
> + *bValidFlags = true;
> }
> else
> - *validFlagPtr = false;
> -
> - validFlagPtr++;
> + *bValidFlags = false;
> }
>
> return numIntra;
> }
>
> -int Predict::isBelowLeftAvailable(const CUData& cu, uint32_t partIdxLT, uint32_t partIdxLB, bool* bValidFlags)
> +int Predict::isBelowLeftAvailable(const CUData& cu, uint32_t partIdxLB, bool* bValidFlags, uint32_t numUnits)
> {
> - const uint32_t numUnitsInPU = (g_zscanToRaster[partIdxLB] - g_zscanToRaster[partIdxLT]) / cu.m_slice->m_sps->numPartInCUSize + 1;
> - bool* validFlagPtr = bValidFlags;
> int numIntra = 0;
>
> - for (uint32_t offset = 1; offset <= numUnitsInPU; offset++)
> + for (uint32_t offset = 1; offset <= numUnits; offset++, bValidFlags--) // opposite direction
> {
> uint32_t partBelowLeft;
> const CUData* cuBelowLeft = cu.getPUBelowLeftAdi(partBelowLeft, partIdxLB, offset);
> - if (cuBelowLeft && (!cu.m_slice->m_pps->bConstrainedIntraPred || cuBelowLeft->isIntra(partBelowLeft)))
> + if (cuBelowLeft)
> {
> numIntra++;
> - *validFlagPtr = true;
> + *bValidFlags = true;
> }
> else
> - *validFlagPtr = false;
> -
> - validFlagPtr--; // opposite direction
> + *bValidFlags = false;
> }
>
> return numIntra;
> }
> +
> +bool Predict::isAboveLeftAvailableCIP(const CUData& cu, uint32_t partIdxLT)
> +{
> + uint32_t partAboveLeft;
> + const CUData* cuAboveLeft = cu.getPUAboveLeft(partAboveLeft, partIdxLT);
> +
> + return cuAboveLeft && cuAboveLeft->isIntra(partAboveLeft);
> +}
> +
> +int Predict::isAboveAvailableCIP(const CUData& cu, uint32_t partIdxLT, uint32_t partIdxRT, bool* bValidFlags)
> +{
> + const uint32_t rasterPartBegin = g_zscanToRaster[partIdxLT];
> + const uint32_t rasterPartEnd = g_zscanToRaster[partIdxRT];
> + const uint32_t idxStep = 1;
> + int numIntra = 0;
> +
> + for (uint32_t rasterPart = rasterPartBegin; rasterPart <= rasterPartEnd; rasterPart += idxStep, bValidFlags++)
> + {
> + uint32_t partAbove;
> + const CUData* cuAbove = cu.getPUAbove(partAbove, g_rasterToZscan[rasterPart]);
> + if (cuAbove && cuAbove->isIntra(partAbove))
> + {
> + numIntra++;
> + *bValidFlags = true;
> + }
> + else
> + *bValidFlags = false;
> + }
> +
> + return numIntra;
> +}
> +
> +int Predict::isLeftAvailableCIP(const CUData& cu, uint32_t partIdxLT, uint32_t partIdxLB, bool* bValidFlags)
> +{
> + const uint32_t rasterPartBegin = g_zscanToRaster[partIdxLT];
> + const uint32_t rasterPartEnd = g_zscanToRaster[partIdxLB];
> + const uint32_t idxStep = cu.m_slice->m_sps->numPartInCUSize;
> + int numIntra = 0;
> +
> + for (uint32_t rasterPart = rasterPartBegin; rasterPart <= rasterPartEnd; rasterPart += idxStep, bValidFlags--) // opposite direction
> + {
> + uint32_t partLeft;
> + const CUData* cuLeft = cu.getPULeft(partLeft, g_rasterToZscan[rasterPart]);
> + if (cuLeft && cuLeft->isIntra(partLeft))
> + {
> + numIntra++;
> + *bValidFlags = true;
> + }
> + else
> + *bValidFlags = false;
> + }
> +
> + return numIntra;
> +}
> +
> +int Predict::isAboveRightAvailableCIP(const CUData& cu, uint32_t partIdxRT, bool* bValidFlags, uint32_t numUnits)
> +{
> + int numIntra = 0;
> +
> + for (uint32_t offset = 1; offset <= numUnits; offset++, bValidFlags++)
> + {
> + uint32_t partAboveRight;
> + const CUData* cuAboveRight = cu.getPUAboveRightAdi(partAboveRight, partIdxRT, offset);
> + if (cuAboveRight && cuAboveRight->isIntra(partAboveRight))
> + {
> + numIntra++;
> + *bValidFlags = true;
> + }
> + else
> + *bValidFlags = false;
> + }
> +
> + return numIntra;
> +}
> +
> +int Predict::isBelowLeftAvailableCIP(const CUData& cu, uint32_t partIdxLB, bool* bValidFlags, uint32_t numUnits)
> +{
> + int numIntra = 0;
> +
> + for (uint32_t offset = 1; offset <= numUnits; offset++, bValidFlags--) // opposite direction
> + {
> + uint32_t partBelowLeft;
> + const CUData* cuBelowLeft = cu.getPUBelowLeftAdi(partBelowLeft, partIdxLB, offset);
> + if (cuBelowLeft && cuBelowLeft->isIntra(partBelowLeft))
> + {
> + numIntra++;
> + *bValidFlags = true;
> + }
> + else
> + *bValidFlags = false;
> + }
> +
> + return numIntra;
> +}
> diff -r 8d2f418829c8 -r 6b59452a17d7 source/common/predict.h
> --- a/source/common/predict.h Sat Dec 20 21:27:14 2014 +0900
> +++ b/source/common/predict.h Tue Dec 23 14:49:59 2014 +0900
> @@ -57,7 +57,6 @@
> int unitWidth;
> int unitHeight;
> int tuSize;
> - uint32_t log2TrSize;
> bool bNeighborFlags[4 * MAX_NUM_SPU_W + 1];
> };
>
> @@ -105,14 +104,20 @@
> void addWeightUni(Yuv& predYuv, const ShortYuv& srcYuv, const WeightValues wp[3], bool bLuma, bool bChroma) const;
>
> /* Intra prediction helper functions */
> - static void initIntraNeighbors(const CUData& cu, uint32_t zOrderIdxInPart, uint32_t partDepth, bool isLuma, IntraNeighbors *IntraNeighbors);
> + static void initIntraNeighbors(const CUData& cu, uint32_t absPartIdx, uint32_t tuDepth, bool isLuma, IntraNeighbors *IntraNeighbors);
> static void fillReferenceSamples(const pixel* adiOrigin, intptr_t picStride, pixel* adiRef, const IntraNeighbors& intraNeighbors);
>
> static bool isAboveLeftAvailable(const CUData& cu, uint32_t partIdxLT);
> static int isAboveAvailable(const CUData& cu, uint32_t partIdxLT, uint32_t partIdxRT, bool* bValidFlags);
> static int isLeftAvailable(const CUData& cu, uint32_t partIdxLT, uint32_t partIdxLB, bool* bValidFlags);
> - static int isAboveRightAvailable(const CUData& cu, uint32_t partIdxLT, uint32_t partIdxRT, bool* bValidFlags);
> - static int isBelowLeftAvailable(const CUData& cu, uint32_t partIdxLT, uint32_t partIdxLB, bool* bValidFlags);
> + static int isAboveRightAvailable(const CUData& cu, uint32_t partIdxRT, bool* bValidFlags, uint32_t numUnits);
> + static int isBelowLeftAvailable(const CUData& cu, uint32_t partIdxLB, bool* bValidFlags, uint32_t numUnits);
> +
> + static bool isAboveLeftAvailableCIP(const CUData& cu, uint32_t partIdxLT);
> + static int isAboveAvailableCIP(const CUData& cu, uint32_t partIdxLT, uint32_t partIdxRT, bool* bValidFlags);
> + static int isLeftAvailableCIP(const CUData& cu, uint32_t partIdxLT, uint32_t partIdxLB, bool* bValidFlags);
> + static int isAboveRightAvailableCIP(const CUData& cu, uint32_t partIdxRT, bool* bValidFlags, uint32_t numUnits);
> + static int isBelowLeftAvailableCIP(const CUData& cu, uint32_t partIdxLB, bool* bValidFlags, uint32_t numUnits);
>
> public:
>
> @@ -125,8 +130,8 @@
> void predIntraLumaAng(uint32_t dirMode, pixel* pred, intptr_t stride, uint32_t log2TrSize);
> void predIntraChromaAng(pixel* src, uint32_t dirMode, pixel* pred, intptr_t stride, uint32_t log2TrSizeC, int chFmt);
>
> - void initAdiPattern(const CUData& cu, const CUGeom& cuGeom, uint32_t absPartIdx, uint32_t partDepth, int dirMode);
> - void initAdiPatternChroma(const CUData& cu, const CUGeom& cuGeom, uint32_t absPartIdx, uint32_t partDepth, uint32_t chromaId);
> + void initAdiPattern(const CUData& cu, const CUGeom& cuGeom, uint32_t absPartIdx, const IntraNeighbors& intraNeighbors, int dirMode);
> + void initAdiPatternChroma(const CUData& cu, const CUGeom& cuGeom, uint32_t absPartIdx, const IntraNeighbors& intraNeighbors, uint32_t chromaId);
> pixel* getAdiChromaBuf(uint32_t chromaId, int tuSize)
> {
> return m_predBuf + (chromaId == 1 ? 0 : 2 * ADI_BUF_STRIDE * (tuSize * 2 + 1));
> diff -r 8d2f418829c8 -r 6b59452a17d7 source/encoder/analysis.cpp
> --- a/source/encoder/analysis.cpp Sat Dec 20 21:27:14 2014 +0900
> +++ b/source/encoder/analysis.cpp Tue Dec 23 14:49:59 2014 +0900
> @@ -914,7 +914,7 @@
> cu.getInterTUQtDepthRange(tuDepthRange, 0);
>
> m_rqt[cuGeom.depth].tmpResiYuv.subtract(*md.bestMode->fencYuv, md.bestMode->predYuv, cuGeom.log2CUSize);
> - residualTransformQuantInter(*md.bestMode, cuGeom, 0, cuGeom.depth, tuDepthRange);
> + residualTransformQuantInter(*md.bestMode, cuGeom, 0, 0, tuDepthRange);
> if (cu.getQtRootCbf(0))
> md.bestMode->reconYuv.addClip(md.bestMode->predYuv, m_rqt[cuGeom.depth].tmpResiYuv, cu.m_log2CUSize[0]);
> else
> @@ -938,8 +938,7 @@
> uint32_t tuDepthRange[2];
> cu.getIntraTUQtDepthRange(tuDepthRange, 0);
>
> - uint32_t initTuDepth = cu.m_partSize[0] != SIZE_2Nx2N;
> - residualTransformQuantIntra(*md.bestMode, cuGeom, initTuDepth, 0, tuDepthRange);
> + residualTransformQuantIntra(*md.bestMode, cuGeom, 0, 0, tuDepthRange);
> getBestIntraModeChroma(*md.bestMode, cuGeom);
> residualQTIntraChroma(*md.bestMode, cuGeom, 0, 0);
> md.bestMode->reconYuv.copyFromPicYuv(*m_frame->m_reconPic, cu.m_cuAddr, cuGeom.encodeIdx); // TODO:
> @@ -1702,8 +1701,7 @@
> uint32_t tuDepthRange[2];
> cu.getIntraTUQtDepthRange(tuDepthRange, 0);
>
> - uint32_t initTuDepth = cu.m_partSize[0] != SIZE_2Nx2N;
> - residualTransformQuantIntra(*bestMode, cuGeom, initTuDepth, 0, tuDepthRange);
> + residualTransformQuantIntra(*bestMode, cuGeom, 0, 0, tuDepthRange);
> getBestIntraModeChroma(*bestMode, cuGeom);
> residualQTIntraChroma(*bestMode, cuGeom, 0, 0);
> }
> @@ -1736,7 +1734,7 @@
> uint32_t tuDepthRange[2];
> cu.getInterTUQtDepthRange(tuDepthRange, 0);
>
> - residualTransformQuantInter(*bestMode, cuGeom, 0, cuGeom.depth, tuDepthRange);
> + residualTransformQuantInter(*bestMode, cuGeom, 0, 0, tuDepthRange);
>
> if (cu.m_mergeFlag[0] && cu.m_partSize[0] == SIZE_2Nx2N && !cu.getQtRootCbf(0))
> cu.setPredModeSubParts(MODE_SKIP);
> diff -r 8d2f418829c8 -r 6b59452a17d7 source/encoder/search.cpp
> --- a/source/encoder/search.cpp Sat Dec 20 21:27:14 2014 +0900
> +++ b/source/encoder/search.cpp Tue Dec 23 14:49:59 2014 +0900
> @@ -239,7 +239,8 @@
>
> void Search::codeIntraLumaQT(Mode& mode, const CUGeom& cuGeom, uint32_t tuDepth, uint32_t absPartIdx, bool bAllowSplit, Cost& outCost, const uint32_t depthRange[2])
> {
> - uint32_t fullDepth = mode.cu.m_cuDepth[0] + tuDepth;
> + CUData& cu = mode.cu;
> + uint32_t fullDepth = cu.m_cuDepth[0] + tuDepth;
> uint32_t log2TrSize = g_maxLog2CUSize - fullDepth;
> uint32_t qtLayer = log2TrSize - 2;
> uint32_t sizeIdx = log2TrSize - 2;
> @@ -253,8 +254,6 @@
> mightSplit = true;
> }
>
> - CUData& cu = mode.cu;
> -
> Cost fullCost;
> uint32_t bCBF = 0;
>
> @@ -273,7 +272,9 @@
>
> // init availability pattern
> uint32_t lumaPredMode = cu.m_lumaIntraDir[absPartIdx];
> - initAdiPattern(cu, cuGeom, absPartIdx, tuDepth, lumaPredMode);
> + IntraNeighbors intraNeighbors;
> + initIntraNeighbors(cu, absPartIdx, tuDepth, true, &intraNeighbors);
> + initAdiPattern(cu, cuGeom, absPartIdx, intraNeighbors, lumaPredMode);
>
> // get prediction signal
> predIntraLumaAng(lumaPredMode, pred, stride, log2TrSize);
> @@ -365,7 +366,7 @@
> m_entropyCoder.load(m_rqt[fullDepth].rqtRoot); // prep state of split encode
> }
>
> - // code split block
> + /* code split block */
> uint32_t qNumParts = 1 << (log2TrSize - 1 - LOG2_UNIT_SIZE) * 2;
>
> int checkTransformSkip = m_slice->m_pps->bTransformSkipEnabled && (log2TrSize - 1) <= MAX_LOG2_TS_SIZE && !cu.m_tqBypass[0];
> @@ -451,11 +452,13 @@
> pixel* pred = predYuv->getLumaAddr(absPartIdx);
> int16_t* residual = m_rqt[cuGeom.depth].tmpResiYuv.getLumaAddr(absPartIdx);
> uint32_t stride = fencYuv->m_size;
> - int sizeIdx = log2TrSize - 2;
> + uint32_t sizeIdx = log2TrSize - 2;
>
> // init availability pattern
> uint32_t lumaPredMode = cu.m_lumaIntraDir[absPartIdx];
> - initAdiPattern(cu, cuGeom, absPartIdx, tuDepth, lumaPredMode);
> + IntraNeighbors intraNeighbors;
> + initIntraNeighbors(cu, absPartIdx, tuDepth, true, &intraNeighbors);
> + initAdiPattern(cu, cuGeom, absPartIdx, intraNeighbors, lumaPredMode);
>
> // get prediction signal
> predIntraLumaAng(lumaPredMode, pred, stride, log2TrSize);
> @@ -597,13 +600,12 @@
> }
>
> /* fast luma intra residual generation. Only perform the minimum number of TU splits required by the CU size */
> -void Search::residualTransformQuantIntra(Mode& mode, const CUGeom& cuGeom, uint32_t tuDepth, uint32_t absPartIdx, const uint32_t depthRange[2])
> +void Search::residualTransformQuantIntra(Mode& mode, const CUGeom& cuGeom, uint32_t absPartIdx, uint32_t tuDepth, const uint32_t depthRange[2])
> {
> CUData& cu = mode.cu;
> -
> - uint32_t fullDepth = cu.m_cuDepth[0] + tuDepth;
> - uint32_t log2TrSize = g_maxLog2CUSize - fullDepth;
> - bool bCheckFull = log2TrSize <= depthRange[1];
> + uint32_t fullDepth = cu.m_cuDepth[0] + tuDepth;
> + uint32_t log2TrSize = g_maxLog2CUSize - fullDepth;
> + bool bCheckFull = log2TrSize <= depthRange[1];
>
> X265_CHECK(m_slice->m_sliceType != I_SLICE, "residualTransformQuantIntra not intended for I slices\n");
>
> @@ -614,28 +616,36 @@
>
> if (bCheckFull)
> {
> - const pixel* fenc = mode.fencYuv->getLumaAddr(absPartIdx);
> - pixel* pred = mode.predYuv.getLumaAddr(absPartIdx);
> - int16_t* residual = m_rqt[cuGeom.depth].tmpResiYuv.getLumaAddr(absPartIdx);
> + const pixel* fenc = mode.fencYuv->getLumaAddr(absPartIdx);
> + pixel* pred = mode.predYuv.getLumaAddr(absPartIdx);
> + int16_t* residual = m_rqt[cuGeom.depth].tmpResiYuv.getLumaAddr(absPartIdx);
> + uint32_t stride = mode.fencYuv->m_size;
> +
> + // init availability pattern
> + uint32_t lumaPredMode = cu.m_lumaIntraDir[absPartIdx];
> + IntraNeighbors intraNeighbors;
> + initIntraNeighbors(cu, absPartIdx, tuDepth, true, &intraNeighbors);
> + initAdiPattern(cu, cuGeom, absPartIdx, intraNeighbors, lumaPredMode);
> +
> + // get prediction signal
> + predIntraLumaAng(lumaPredMode, pred, stride, log2TrSize);
> +
> + X265_CHECK(!cu.m_transformSkip[TEXT_LUMA][absPartIdx], "unexpected tskip flag in residualTransformQuantIntra\n");
> + cu.setTUDepthSubParts(tuDepth, absPartIdx, fullDepth);
> +
> + uint32_t coeffOffsetY = absPartIdx << (LOG2_UNIT_SIZE * 2);
> + coeff_t* coeffY = cu.m_trCoeff[0] + coeffOffsetY;
> +
> + uint32_t sizeIdx = log2TrSize - 2;
> + primitives.calcresidual[sizeIdx](fenc, pred, residual, stride);
> +
> pixel* picReconY = m_frame->m_reconPic->getLumaAddr(cu.m_cuAddr, cuGeom.encodeIdx + absPartIdx);
> intptr_t picStride = m_frame->m_reconPic->m_stride;
> - uint32_t stride = mode.fencYuv->m_size;
> - uint32_t sizeIdx = log2TrSize - 2;
> - uint32_t lumaPredMode = cu.m_lumaIntraDir[absPartIdx];
> - uint32_t coeffOffsetY = absPartIdx << (LOG2_UNIT_SIZE * 2);
> - coeff_t* coeff = cu.m_trCoeff[TEXT_LUMA] + coeffOffsetY;
> -
> - initAdiPattern(cu, cuGeom, absPartIdx, tuDepth, lumaPredMode);
> - predIntraLumaAng(lumaPredMode, pred, stride, log2TrSize);
> -
> - X265_CHECK(!cu.m_transformSkip[TEXT_LUMA][absPartIdx], "unexpected tskip flag in residualTransformQuantIntra\n");
> - cu.setTUDepthSubParts(tuDepth, absPartIdx, fullDepth);
> -
> - primitives.calcresidual[sizeIdx](fenc, pred, residual, stride);
> - uint32_t numSig = m_quant.transformNxN(cu, fenc, stride, residual, stride, coeff, log2TrSize, TEXT_LUMA, absPartIdx, false);
> +
> + uint32_t numSig = m_quant.transformNxN(cu, fenc, stride, residual, stride, coeffY, log2TrSize, TEXT_LUMA, absPartIdx, false);
> if (numSig)
> {
> - m_quant.invtransformNxN(cu.m_tqBypass[absPartIdx], residual, stride, coeff, log2TrSize, TEXT_LUMA, true, false, numSig);
> + m_quant.invtransformNxN(cu.m_tqBypass[0], residual, stride, coeffY, log2TrSize, TEXT_LUMA, true, false, numSig);
> primitives.luma_add_ps[sizeIdx](picReconY, picStride, pred, residual, stride, stride);
> cu.setCbfSubParts(1 << tuDepth, TEXT_LUMA, absPartIdx, fullDepth);
> }
> @@ -654,11 +664,11 @@
> uint32_t cbf = 0;
> for (uint32_t qIdx = 0, qPartIdx = absPartIdx; qIdx < 4; ++qIdx, qPartIdx += qNumParts)
> {
> - residualTransformQuantIntra(mode, cuGeom, tuDepth + 1, qPartIdx, depthRange);
> + residualTransformQuantIntra(mode, cuGeom, qPartIdx, tuDepth + 1, depthRange);
> cbf |= cu.getCbf(qPartIdx, TEXT_LUMA, tuDepth + 1);
> }
> for (uint32_t offs = 0; offs < 4 * qNumParts; offs++)
> - cu.m_cbf[TEXT_LUMA][absPartIdx + offs] |= (cbf << tuDepth);
> + cu.m_cbf[0][absPartIdx + offs] |= (cbf << tuDepth);
> }
> }
>
> @@ -739,15 +749,14 @@
> }
> for (uint32_t offs = 0; offs < 4 * qNumParts; offs++)
> {
> - cu.m_cbf[TEXT_CHROMA_U][absPartIdx + offs] |= (splitCbfU << tuDepth);
> - cu.m_cbf[TEXT_CHROMA_V][absPartIdx + offs] |= (splitCbfV << tuDepth);
> + cu.m_cbf[1][absPartIdx + offs] |= (splitCbfU << tuDepth);
> + cu.m_cbf[2][absPartIdx + offs] |= (splitCbfV << tuDepth);
> }
>
> return outDist;
> }
>
> uint32_t log2TrSizeC = log2TrSize - m_hChromaShift;
> -
> uint32_t tuDepthC = tuDepth;
> if (log2TrSizeC < 2)
> {
> @@ -766,46 +775,48 @@
> if (checkTransformSkip)
> return codeIntraChromaTSkip(mode, cuGeom, tuDepth, tuDepthC, absPartIdx, psyEnergy);
>
> + ShortYuv& resiYuv = m_rqt[cuGeom.depth].tmpResiYuv;
> uint32_t qtLayer = log2TrSize - 2;
> uint32_t tuSize = 1 << log2TrSizeC;
> + uint32_t stride = mode.fencYuv->m_csize;
> + const uint32_t sizeIdxC = log2TrSizeC - 2;
> uint32_t outDist = 0;
>
> uint32_t curPartNum = NUM_CU_PARTITIONS >> ((cu.m_cuDepth[0] + tuDepthC) << 1);
> const SplitType splitType = (m_csp == X265_CSP_I422) ? VERTICAL_SPLIT : DONT_SPLIT;
>
> - for (uint32_t chromaId = TEXT_CHROMA_U; chromaId <= TEXT_CHROMA_V; chromaId++)
> + TURecurse tuIterator(splitType, curPartNum, absPartIdx);
> + do
> {
> - TextType ttype = (TextType)chromaId;
> -
> - TURecurse tuIterator(splitType, curPartNum, absPartIdx);
> - do
> + uint32_t absPartIdxC = tuIterator.absPartIdxTURelCU;
> +
> + IntraNeighbors intraNeighbors;
> + initIntraNeighbors(cu, absPartIdxC, tuDepthC, false, &intraNeighbors);
> +
> + for (uint32_t chromaId = TEXT_CHROMA_U; chromaId <= TEXT_CHROMA_V; chromaId++)
> {
> - uint32_t absPartIdxC = tuIterator.absPartIdxTURelCU;
> + TextType ttype = (TextType)chromaId;
>
> const pixel* fenc = mode.fencYuv->getChromaAddr(chromaId, absPartIdxC);
> pixel* pred = mode.predYuv.getChromaAddr(chromaId, absPartIdxC);
> - int16_t* residual = m_rqt[cuGeom.depth].tmpResiYuv.getChromaAddr(chromaId, absPartIdxC);
> - uint32_t stride = mode.fencYuv->m_csize;
> - uint32_t sizeIdxC = log2TrSizeC - 2;
> -
> + int16_t* residual = resiYuv.getChromaAddr(chromaId, absPartIdxC);
> uint32_t coeffOffsetC = absPartIdxC << (LOG2_UNIT_SIZE * 2 - (m_hChromaShift + m_vChromaShift));
> coeff_t* coeffC = m_rqt[qtLayer].coeffRQT[chromaId] + coeffOffsetC;
> pixel* reconQt = m_rqt[qtLayer].reconQtYuv.getChromaAddr(chromaId, absPartIdxC);
> uint32_t reconQtStride = m_rqt[qtLayer].reconQtYuv.m_csize;
> -
> pixel* picReconC = m_frame->m_reconPic->getChromaAddr(chromaId, cu.m_cuAddr, cuGeom.encodeIdx + absPartIdxC);
> intptr_t picStride = m_frame->m_reconPic->m_strideC;
>
> - // init availability pattern
> - initAdiPatternChroma(cu, cuGeom, absPartIdxC, tuDepthC, chromaId);
> - pixel* chromaPred = getAdiChromaBuf(chromaId, tuSize);
> -
> uint32_t chromaPredMode = cu.m_chromaIntraDir[absPartIdxC];
> if (chromaPredMode == DM_CHROMA_IDX)
> chromaPredMode = cu.m_lumaIntraDir[(m_csp == X265_CSP_I444) ? absPartIdxC : 0];
> if (m_csp == X265_CSP_I422)
> chromaPredMode = g_chroma422IntraAngleMappingTable[chromaPredMode];
>
> + // init availability pattern
> + initAdiPatternChroma(cu, cuGeom, absPartIdxC, intraNeighbors, chromaId);
> + pixel* chromaPred = getAdiChromaBuf(chromaId, tuSize);
> +
> // get prediction signal
> predIntraChromaAng(chromaPred, chromaPredMode, pred, stride, log2TrSizeC, m_csp);
>
> @@ -813,7 +824,6 @@
>
> primitives.calcresidual[sizeIdxC](fenc, pred, residual, stride);
> uint32_t numSig = m_quant.transformNxN(cu, fenc, stride, residual, stride, coeffC, log2TrSizeC, ttype, absPartIdxC, false);
> - uint32_t tmpDist;
> if (numSig)
> {
> m_quant.invtransformNxN(cu.m_tqBypass[0], residual, stride, coeffC, log2TrSizeC, ttype, true, false, numSig);
> @@ -827,7 +837,7 @@
> cu.setCbfPartRange(0, ttype, absPartIdxC, tuIterator.absPartIdxStep);
> }
>
> - tmpDist = primitives.sse_pp[sizeIdxC](reconQt, reconQtStride, fenc, stride);
> + uint32_t tmpDist = primitives.sse_pp[sizeIdxC](reconQt, reconQtStride, fenc, stride);
> outDist += (ttype == TEXT_CHROMA_U) ? m_rdCost.scaleChromaDistCb(tmpDist) : m_rdCost.scaleChromaDistCr(tmpDist);
>
> if (m_rdCost.m_psyRd)
> @@ -835,10 +845,13 @@
>
> primitives.luma_copy_pp[sizeIdxC](picReconC, picStride, reconQt, reconQtStride);
> }
> - while (tuIterator.isNextSection());
> -
> - if (splitType == VERTICAL_SPLIT)
> - offsetSubTUCBFs(cu, ttype, tuDepth, absPartIdx);
> + }
> + while (tuIterator.isNextSection());
> +
> + if (splitType == VERTICAL_SPLIT)
> + {
> + offsetSubTUCBFs(cu, TEXT_CHROMA_U, tuDepth, absPartIdx);
> + offsetSubTUCBFs(cu, TEXT_CHROMA_V, tuDepth, absPartIdx);
> }
>
> return outDist;
> @@ -866,14 +879,17 @@
> uint32_t curPartNum = NUM_CU_PARTITIONS >> ((cu.m_cuDepth[0] + tuDepthC) << 1);
> const SplitType splitType = (m_csp == X265_CSP_I422) ? VERTICAL_SPLIT : DONT_SPLIT;
>
> - for (uint32_t chromaId = TEXT_CHROMA_U; chromaId <= TEXT_CHROMA_V; chromaId++)
> + TURecurse tuIterator(splitType, curPartNum, absPartIdx);
> + do
> {
> - TextType ttype = (TextType)chromaId;
> -
> - TURecurse tuIterator(splitType, curPartNum, absPartIdx);
> - do
> + uint32_t absPartIdxC = tuIterator.absPartIdxTURelCU;
> +
> + IntraNeighbors intraNeighbors;
> + initIntraNeighbors(cu, absPartIdxC, tuDepthC, false, &intraNeighbors);
> +
> + for (uint32_t chromaId = TEXT_CHROMA_U; chromaId <= TEXT_CHROMA_V; chromaId++)
> {
> - uint32_t absPartIdxC = tuIterator.absPartIdxTURelCU;
> + TextType ttype = (TextType)chromaId;
>
> const pixel* fenc = mode.fencYuv->getChromaAddr(chromaId, absPartIdxC);
> pixel* pred = mode.predYuv.getChromaAddr(chromaId, absPartIdxC);
> @@ -887,7 +903,7 @@
> uint32_t reconQtStride = m_rqt[qtLayer].reconQtYuv.m_csize;
>
> // init availability pattern
> - initAdiPatternChroma(cu, cuGeom, absPartIdxC, tuDepthC, chromaId);
> + initAdiPatternChroma(cu, cuGeom, absPartIdxC, intraNeighbors, chromaId);
> pixel* chromaPred = getAdiChromaBuf(chromaId, tuSize);
>
> uint32_t chromaPredMode = cu.m_chromaIntraDir[absPartIdxC];
> @@ -980,10 +996,13 @@
> outDist += bDist;
> psyEnergy += bEnergy;
> }
> - while (tuIterator.isNextSection());
> -
> - if (splitType == VERTICAL_SPLIT)
> - offsetSubTUCBFs(cu, ttype, tuDepth, absPartIdx);
> + }
> + while (tuIterator.isNextSection());
> +
> + if (splitType == VERTICAL_SPLIT)
> + {
> + offsetSubTUCBFs(cu, TEXT_CHROMA_U, tuDepth, absPartIdx);
> + offsetSubTUCBFs(cu, TEXT_CHROMA_V, tuDepth, absPartIdx);
> }
>
> m_entropyCoder.load(m_rqt[fullDepth].rqtRoot);
> @@ -1022,91 +1041,18 @@
> }
> }
>
> -void Search::residualQTIntraChroma(Mode& mode, const CUGeom& cuGeom, uint32_t tuDepth, uint32_t absPartIdx)
> +void Search::residualQTIntraChroma(Mode& mode, const CUGeom& cuGeom, uint32_t absPartIdx, uint32_t tuDepth)
> {
> CUData& cu = mode.cu;
> - uint32_t fullDepth = cu.m_cuDepth[0] + tuDepth;
> - uint32_t log2TrSize = g_maxLog2CUSize - fullDepth;
> -
> - if (tuDepth == cu.m_tuDepth[absPartIdx])
> - {
> - uint32_t log2TrSizeC = log2TrSize - m_hChromaShift;
> - uint32_t tuDepthC = tuDepth;
> - if (log2TrSizeC < 2)
> - {
> - X265_CHECK(log2TrSize == 2 && m_csp != X265_CSP_I444 && tuDepth, "invalid tuDepth\n");
> - if (absPartIdx & 3)
> - return;
> - log2TrSizeC = 2;
> - tuDepthC--;
> - }
> -
> - ShortYuv& resiYuv = m_rqt[cuGeom.depth].tmpResiYuv;
> - uint32_t tuSize = 1 << log2TrSizeC;
> - uint32_t stride = mode.fencYuv->m_csize;
> - const int sizeIdxC = log2TrSizeC - 2;
> -
> - uint32_t curPartNum = NUM_CU_PARTITIONS >> ((cu.m_cuDepth[0] + tuDepthC) << 1);
> - const SplitType splitType = (m_csp == X265_CSP_I422) ? VERTICAL_SPLIT : DONT_SPLIT;
> -
> - for (uint32_t chromaId = TEXT_CHROMA_U; chromaId <= TEXT_CHROMA_V; chromaId++)
> - {
> - TextType ttype = (TextType)chromaId;
> -
> - TURecurse tuIterator(splitType, curPartNum, absPartIdx);
> - do
> - {
> - uint32_t absPartIdxC = tuIterator.absPartIdxTURelCU;
> -
> - const pixel* fenc = mode.fencYuv->getChromaAddr(chromaId, absPartIdxC);
> - pixel* pred = mode.predYuv.getChromaAddr(chromaId, absPartIdxC);
> - int16_t* residual = resiYuv.getChromaAddr(chromaId, absPartIdxC);
> - pixel* recon = mode.reconYuv.getChromaAddr(chromaId, absPartIdxC); // TODO: needed?
> - uint32_t coeffOffsetC = absPartIdxC << (LOG2_UNIT_SIZE * 2 - (m_hChromaShift + m_vChromaShift));
> - coeff_t* coeff = cu.m_trCoeff[ttype] + coeffOffsetC;
> - pixel* picReconC = m_frame->m_reconPic->getChromaAddr(chromaId, cu.m_cuAddr, cuGeom.encodeIdx + absPartIdxC);
> - uint32_t picStride = m_frame->m_reconPic->m_strideC;
> -
> - uint32_t chromaPredMode = cu.m_chromaIntraDir[absPartIdxC];
> - if (chromaPredMode == DM_CHROMA_IDX)
> - chromaPredMode = cu.m_lumaIntraDir[(m_csp == X265_CSP_I444) ? absPartIdxC : 0];
> - chromaPredMode = (m_csp == X265_CSP_I422) ? g_chroma422IntraAngleMappingTable[chromaPredMode] : chromaPredMode;
> - initAdiPatternChroma(cu, cuGeom, absPartIdxC, tuDepthC, chromaId);
> - pixel* chromaPred = getAdiChromaBuf(chromaId, tuSize);
> -
> - predIntraChromaAng(chromaPred, chromaPredMode, pred, stride, log2TrSizeC, m_csp);
> -
> - X265_CHECK(!cu.m_transformSkip[ttype][0], "transform skip not supported at low RD levels\n");
> -
> - primitives.calcresidual[sizeIdxC](fenc, pred, residual, stride);
> - uint32_t numSig = m_quant.transformNxN(cu, fenc, stride, residual, stride, coeff, log2TrSizeC, ttype, absPartIdxC, false);
> - if (numSig)
> - {
> - m_quant.invtransformNxN(cu.m_tqBypass[absPartIdxC], residual, stride, coeff, log2TrSizeC, ttype, true, false, numSig);
> - primitives.luma_add_ps[sizeIdxC](recon, stride, pred, residual, stride, stride);
> - primitives.luma_copy_pp[sizeIdxC](picReconC, picStride, recon, stride);
> - cu.setCbfPartRange(1 << tuDepth, ttype, absPartIdxC, tuIterator.absPartIdxStep);
> - }
> - else
> - {
> - primitives.luma_copy_pp[sizeIdxC](recon, stride, pred, stride);
> - primitives.luma_copy_pp[sizeIdxC](picReconC, picStride, pred, stride);
> - cu.setCbfPartRange(0, ttype, absPartIdxC, tuIterator.absPartIdxStep);
> - }
> - }
> - while (tuIterator.isNextSection());
> -
> - if (splitType == VERTICAL_SPLIT)
> - offsetSubTUCBFs(cu, (TextType)chromaId, tuDepth, absPartIdx);
> - }
> - }
> - else
> + uint32_t log2TrSize = cu.m_log2CUSize[absPartIdx] - tuDepth;
> +
> + if (tuDepth < cu.m_tuDepth[absPartIdx])
> {
> uint32_t qNumParts = 1 << (log2TrSize - 1 - LOG2_UNIT_SIZE) * 2;
> uint32_t splitCbfU = 0, splitCbfV = 0;
> for (uint32_t qIdx = 0, qPartIdx = absPartIdx; qIdx < 4; ++qIdx, qPartIdx += qNumParts)
> {
> - residualQTIntraChroma(mode, cuGeom, tuDepth + 1, qPartIdx);
> + residualQTIntraChroma(mode, cuGeom, qPartIdx, tuDepth + 1);
> splitCbfU |= cu.getCbf(qPartIdx, TEXT_CHROMA_U, tuDepth + 1);
> splitCbfV |= cu.getCbf(qPartIdx, TEXT_CHROMA_V, tuDepth + 1);
> }
> @@ -1115,12 +1061,91 @@
> cu.m_cbf[1][absPartIdx + offs] |= (splitCbfU << tuDepth);
> cu.m_cbf[2][absPartIdx + offs] |= (splitCbfV << tuDepth);
> }
> +
> + return;
> + }
> +
> + uint32_t log2TrSizeC = log2TrSize - m_hChromaShift;
> + uint32_t tuDepthC = tuDepth;
> + if (log2TrSizeC < 2)
> + {
> + X265_CHECK(log2TrSize == 2 && m_csp != X265_CSP_I444 && tuDepth, "invalid tuDepth\n");
> + if (absPartIdx & 3)
> + return;
> + log2TrSizeC = 2;
> + tuDepthC--;
> + }
> +
> + ShortYuv& resiYuv = m_rqt[cuGeom.depth].tmpResiYuv;
> + uint32_t tuSize = 1 << log2TrSizeC;
> + uint32_t stride = mode.fencYuv->m_csize;
> + const uint32_t sizeIdxC = log2TrSizeC - 2;
> +
> + uint32_t curPartNum = NUM_CU_PARTITIONS >> ((cu.m_cuDepth[0] + tuDepthC) << 1);
> + const SplitType splitType = (m_csp == X265_CSP_I422) ? VERTICAL_SPLIT : DONT_SPLIT;
> +
> + TURecurse tuIterator(splitType, curPartNum, absPartIdx);
> + do
> + {
> + uint32_t absPartIdxC = tuIterator.absPartIdxTURelCU;
> +
> + IntraNeighbors intraNeighbors;
> + initIntraNeighbors(cu, absPartIdxC, tuDepthC, false, &intraNeighbors);
> +
> + for (uint32_t chromaId = TEXT_CHROMA_U; chromaId <= TEXT_CHROMA_V; chromaId++)
> + {
> + TextType ttype = (TextType)chromaId;
> +
> + const pixel* fenc = mode.fencYuv->getChromaAddr(chromaId, absPartIdxC);
> + pixel* pred = mode.predYuv.getChromaAddr(chromaId, absPartIdxC);
> + int16_t* residual = resiYuv.getChromaAddr(chromaId, absPartIdxC);
> + uint32_t coeffOffsetC = absPartIdxC << (LOG2_UNIT_SIZE * 2 - (m_hChromaShift + m_vChromaShift));
> + coeff_t* coeffC = cu.m_trCoeff[ttype] + coeffOffsetC;
> + pixel* picReconC = m_frame->m_reconPic->getChromaAddr(chromaId, cu.m_cuAddr, cuGeom.encodeIdx + absPartIdxC);
> + intptr_t picStride = m_frame->m_reconPic->m_strideC;
> +
> + uint32_t chromaPredMode = cu.m_chromaIntraDir[absPartIdxC];
> + if (chromaPredMode == DM_CHROMA_IDX)
> + chromaPredMode = cu.m_lumaIntraDir[(m_csp == X265_CSP_I444) ? absPartIdxC : 0];
> + if (m_csp == X265_CSP_I422)
> + chromaPredMode = g_chroma422IntraAngleMappingTable[chromaPredMode];
> +
> + // init availability pattern
> + initAdiPatternChroma(cu, cuGeom, absPartIdxC, intraNeighbors, chromaId);
> + pixel* chromaPred = getAdiChromaBuf(chromaId, tuSize);
> +
> + // get prediction signal
> + predIntraChromaAng(chromaPred, chromaPredMode, pred, stride, log2TrSizeC, m_csp);
> +
> + X265_CHECK(!cu.m_transformSkip[ttype][0], "transform skip not supported at low RD levels\n");
> +
> + primitives.calcresidual[sizeIdxC](fenc, pred, residual, stride);
> + uint32_t numSig = m_quant.transformNxN(cu, fenc, stride, residual, stride, coeffC, log2TrSizeC, ttype, absPartIdxC, false);
> + if (numSig)
> + {
> + m_quant.invtransformNxN(cu.m_tqBypass[0], residual, stride, coeffC, log2TrSizeC, ttype, true, false, numSig);
> + primitives.luma_add_ps[sizeIdxC](picReconC, picStride, pred, residual, stride, stride);
> + cu.setCbfPartRange(1 << tuDepth, ttype, absPartIdxC, tuIterator.absPartIdxStep);
> + }
> + else
> + {
> + // no coded residual, recon = pred
> + primitives.luma_copy_pp[sizeIdxC](picReconC, picStride, pred, stride);
> + cu.setCbfPartRange(0, ttype, absPartIdxC, tuIterator.absPartIdxStep);
> + }
> + }
> + }
> + while (tuIterator.isNextSection());
> +
> + if (splitType == VERTICAL_SPLIT)
> + {
> + offsetSubTUCBFs(cu, TEXT_CHROMA_U, tuDepth, absPartIdx);
> + offsetSubTUCBFs(cu, TEXT_CHROMA_V, tuDepth, absPartIdx);
> }
> }
>
> void Search::checkIntra(Mode& intraMode, const CUGeom& cuGeom, PartSize partSize, uint8_t* sharedModes)
> {
> - uint32_t depth = cuGeom.depth;
> CUData& cu = intraMode.cu;
>
> cu.setPartSizeSubParts(partSize);
> @@ -1143,7 +1168,7 @@
> m_entropyCoder.codePredMode(cu.m_predMode[0]);
> }
>
> - m_entropyCoder.codePartSize(cu, 0, depth);
> + m_entropyCoder.codePartSize(cu, 0, cuGeom.depth);
> m_entropyCoder.codePredInfo(cu, 0);
> intraMode.mvBits = m_entropyCoder.getNumberOfWrittenBits();
>
> @@ -1153,7 +1178,10 @@
> intraMode.totalBits = m_entropyCoder.getNumberOfWrittenBits();
> intraMode.coeffBits = intraMode.totalBits - intraMode.mvBits;
> if (m_rdCost.m_psyRd)
> - intraMode.psyEnergy = m_rdCost.psyCost(cuGeom.log2CUSize - 2, intraMode.fencYuv->m_buf[0], intraMode.fencYuv->m_size, intraMode.reconYuv.m_buf[0], intraMode.reconYuv.m_size);
> + {
> + const Yuv* fencYuv = intraMode.fencYuv;
> + intraMode.psyEnergy = m_rdCost.psyCost(cuGeom.log2CUSize - 2, fencYuv->m_buf[0], fencYuv->m_size, intraMode.reconYuv.m_buf[0], intraMode.reconYuv.m_size);
> + }
>
> updateModeCost(intraMode);
> }
> @@ -1174,7 +1202,9 @@
> const uint32_t absPartIdx = 0;
>
> // Reference sample smoothing
> - initAdiPattern(cu, cuGeom, absPartIdx, initTuDepth, ALL_IDX);
> + IntraNeighbors intraNeighbors;
> + initIntraNeighbors(cu, absPartIdx, initTuDepth, true, &intraNeighbors);
> + initAdiPattern(cu, cuGeom, absPartIdx, intraNeighbors, ALL_IDX);
>
> const pixel* fenc = intraMode.fencYuv->m_buf[0];
> uint32_t stride = intraMode.fencYuv->m_size;
> @@ -1335,7 +1365,6 @@
> {
> CUData& cu = intraMode.cu;
> Yuv* reconYuv = &intraMode.reconYuv;
> - const Yuv* fencYuv = intraMode.fencYuv;
>
> X265_CHECK(cu.m_partSize[0] == SIZE_2Nx2N, "encodeIntraInInter does not expect NxN intra\n");
> X265_CHECK(!m_slice->isIntra(), "encodeIntraInInter does not expect to be used in I slices\n");
> @@ -1369,7 +1398,10 @@
> intraMode.totalBits = m_entropyCoder.getNumberOfWrittenBits();
> intraMode.coeffBits = intraMode.totalBits - intraMode.mvBits;
> if (m_rdCost.m_psyRd)
> + {
> + const Yuv* fencYuv = intraMode.fencYuv;
> intraMode.psyEnergy = m_rdCost.psyCost(cuGeom.log2CUSize - 2, fencYuv->m_buf[0], fencYuv->m_size, reconYuv->m_buf[0], reconYuv->m_size);
> + }
>
> m_entropyCoder.store(intraMode.contexts);
> updateModeCost(intraMode);
> @@ -1404,7 +1436,9 @@
> else
> {
> // Reference sample smoothing
> - initAdiPattern(cu, cuGeom, absPartIdx, initTuDepth, ALL_IDX);
> + IntraNeighbors intraNeighbors;
> + initIntraNeighbors(cu, absPartIdx, initTuDepth, true, &intraNeighbors);
> + initAdiPattern(cu, cuGeom, absPartIdx, intraNeighbors, ALL_IDX);
>
> // determine set of modes to be tested (using prediction signal only)
> const pixel* fenc = fencYuv->getLumaAddr(absPartIdx);
> @@ -1602,8 +1636,10 @@
> log2TrSizeC = 5;
> }
>
> - Predict::initAdiPatternChroma(cu, cuGeom, 0, tuDepth, 1);
> - Predict::initAdiPatternChroma(cu, cuGeom, 0, tuDepth, 2);
> + IntraNeighbors intraNeighbors;
> + initIntraNeighbors(cu, 0, tuDepth, false, &intraNeighbors);
> + Predict::initAdiPatternChroma(cu, cuGeom, 0, intraNeighbors, 1); // U
> + Predict::initAdiPatternChroma(cu, cuGeom, 0, intraNeighbors, 2); // V
> cu.getAllowedChromaDir(0, modeList);
>
> // check chroma modes
> @@ -2581,16 +2617,16 @@
> updateModeCost(interMode);
> }
>
> -void Search::residualTransformQuantInter(Mode& mode, const CUGeom& cuGeom, uint32_t absPartIdx, uint32_t depth, const uint32_t depthRange[2])
> +void Search::residualTransformQuantInter(Mode& mode, const CUGeom& cuGeom, uint32_t absPartIdx, uint32_t tuDepth, const uint32_t depthRange[2])
> {
> + uint32_t depth = cuGeom.depth + tuDepth;
> CUData& cu = mode.cu;
> X265_CHECK(cu.m_cuDepth[0] == cu.m_cuDepth[absPartIdx], "invalid depth\n");
>
> uint32_t log2TrSize = g_maxLog2CUSize - depth;
> - uint32_t tuDepth = depth - cu.m_cuDepth[0];
>
> bool bCheckFull = log2TrSize <= depthRange[1];
> - if (cu.m_partSize[0] != SIZE_2Nx2N && depth == cu.m_cuDepth[absPartIdx] && log2TrSize > depthRange[0])
> + if (cu.m_partSize[0] != SIZE_2Nx2N && !tuDepth && log2TrSize > depthRange[0])
> bCheckFull = false;
>
> if (bCheckFull)
> @@ -2611,7 +2647,7 @@
> uint32_t setCbf = 1 << tuDepth;
>
> uint32_t coeffOffsetY = absPartIdx << (LOG2_UNIT_SIZE * 2);
> - coeff_t *coeffCurY = cu.m_trCoeff[0] + coeffOffsetY;
> + coeff_t* coeffCurY = cu.m_trCoeff[0] + coeffOffsetY;
>
> uint32_t sizeIdx = log2TrSize - 2;
>
> @@ -2644,8 +2680,8 @@
> uint32_t strideResiC = resiYuv.m_csize;
>
> uint32_t coeffOffsetC = coeffOffsetY >> (m_hChromaShift + m_vChromaShift);
> - coeff_t *coeffCurU = cu.m_trCoeff[1] + coeffOffsetC;
> - coeff_t *coeffCurV = cu.m_trCoeff[2] + coeffOffsetC;
> + coeff_t* coeffCurU = cu.m_trCoeff[1] + coeffOffsetC;
> + coeff_t* coeffCurV = cu.m_trCoeff[2] + coeffOffsetC;
> bool splitIntoSubTUs = (m_csp == X265_CSP_I422);
>
> TURecurse tuIterator(splitIntoSubTUs ? VERTICAL_SPLIT : DONT_SPLIT, absPartIdxStep, absPartIdx);
> @@ -2702,16 +2738,16 @@
> uint32_t ycbf = 0, ucbf = 0, vcbf = 0;
> for (uint32_t qIdx = 0, qPartIdx = absPartIdx; qIdx < 4; ++qIdx, qPartIdx += qNumParts)
> {
> - residualTransformQuantInter(mode, cuGeom, qPartIdx, depth + 1, depthRange);
> - ycbf |= cu.getCbf(qPartIdx, TEXT_LUMA, tuDepth + 1);
> + residualTransformQuantInter(mode, cuGeom, qPartIdx, tuDepth + 1, depthRange);
> + ycbf |= cu.getCbf(qPartIdx, TEXT_LUMA, tuDepth + 1);
> ucbf |= cu.getCbf(qPartIdx, TEXT_CHROMA_U, tuDepth + 1);
> vcbf |= cu.getCbf(qPartIdx, TEXT_CHROMA_V, tuDepth + 1);
> }
> - for (uint32_t i = 0; i < 4 * qNumParts; i++)
> + for (uint32_t i = 0; i < 4 * qNumParts; ++i)
> {
> - cu.m_cbf[TEXT_LUMA][absPartIdx + i] |= ycbf << tuDepth;
> - cu.m_cbf[TEXT_CHROMA_U][absPartIdx + i] |= ucbf << tuDepth;
> - cu.m_cbf[TEXT_CHROMA_V][absPartIdx + i] |= vcbf << tuDepth;
> + cu.m_cbf[0][absPartIdx + i] |= ycbf << tuDepth;
> + cu.m_cbf[1][absPartIdx + i] |= ucbf << tuDepth;
> + cu.m_cbf[2][absPartIdx + i] |= vcbf << tuDepth;
> }
> }
> }
> @@ -2769,7 +2805,7 @@
>
> uint32_t trSize = 1 << log2TrSize;
> const bool splitIntoSubTUs = (m_csp == X265_CSP_I422);
> - uint32_t absPartIdxStep = NUM_CU_PARTITIONS >> ((cu.m_cuDepth[0] + tuDepthC) << 1);
> + uint32_t absPartIdxStep = NUM_CU_PARTITIONS >> ((cu.m_cuDepth[0] + tuDepthC) << 1);
> const Yuv* fencYuv = mode.fencYuv;
>
> // code full block
> @@ -3127,16 +3163,19 @@
> //Encode cbf flags
> if (bCodeChroma)
> {
> - for (uint32_t chromaId = TEXT_CHROMA_U; chromaId <= TEXT_CHROMA_V; chromaId++)
> + if (!splitIntoSubTUs)
> {
> - if (!splitIntoSubTUs)
> - m_entropyCoder.codeQtCbfChroma(cbfFlag[chromaId][0], tuDepth);
> - else
> - {
> - offsetSubTUCBFs(cu, (TextType)chromaId, tuDepth, absPartIdx);
> - m_entropyCoder.codeQtCbfChroma(cbfFlag[chromaId][0], tuDepth);
> - m_entropyCoder.codeQtCbfChroma(cbfFlag[chromaId][1], tuDepth);
> - }
> + m_entropyCoder.codeQtCbfChroma(cbfFlag[TEXT_CHROMA_U][0], tuDepth);
> + m_entropyCoder.codeQtCbfChroma(cbfFlag[TEXT_CHROMA_V][0], tuDepth);
> + }
> + else
> + {
> + offsetSubTUCBFs(cu, TEXT_CHROMA_U, tuDepth, absPartIdx);
> + offsetSubTUCBFs(cu, TEXT_CHROMA_V, tuDepth, absPartIdx);
> + m_entropyCoder.codeQtCbfChroma(cbfFlag[TEXT_CHROMA_U][0], tuDepth);
> + m_entropyCoder.codeQtCbfChroma(cbfFlag[TEXT_CHROMA_U][1], tuDepth);
> + m_entropyCoder.codeQtCbfChroma(cbfFlag[TEXT_CHROMA_V][0], tuDepth);
> + m_entropyCoder.codeQtCbfChroma(cbfFlag[TEXT_CHROMA_V][1], tuDepth);
> }
> }
>
> diff -r 8d2f418829c8 -r 6b59452a17d7 source/encoder/search.h
> --- a/source/encoder/search.h Sat Dec 20 21:27:14 2014 +0900
> +++ b/source/encoder/search.h Tue Dec 23 14:49:59 2014 +0900
> @@ -178,9 +178,9 @@
> void encodeResAndCalcRdSkipCU(Mode& interMode);
>
> // encode residual without rd-cost
> - void residualTransformQuantInter(Mode& mode, const CUGeom& cuGeom, uint32_t absPartIdx, uint32_t depth, const uint32_t depthRange[2]);
> - void residualTransformQuantIntra(Mode& mode, const CUGeom& cuGeom, uint32_t tuDepth, uint32_t absPartIdx, const uint32_t depthRange[2]);
> - void residualQTIntraChroma(Mode& mode, const CUGeom& cuGeom, uint32_t tuDepth, uint32_t absPartIdx);
> + void residualTransformQuantInter(Mode& mode, const CUGeom& cuGeom, uint32_t absPartIdx, uint32_t tuDepth, const uint32_t depthRange[2]);
> + void residualTransformQuantIntra(Mode& mode, const CUGeom& cuGeom, uint32_t absPartIdx, uint32_t tuDepth, const uint32_t depthRange[2]);
> + void residualQTIntraChroma(Mode& mode, const CUGeom& cuGeom, uint32_t absPartIdx, uint32_t tuDepth);
>
> // pick be chroma mode from available using just sa8d costs
> void getBestIntraModeChroma(Mode& intraMode, const CUGeom& cuGeom);
> _______________________________________________
> x265-devel mailing list
> x265-devel at videolan.org
> https://mailman.videolan.org/listinfo/x265-devel
>
>
>
> _______________________________________________
> x265-devel mailing list
> x265-devel at videolan.org
> https://mailman.videolan.org/listinfo/x265-devel
--
Steve Borho
More information about the x265-devel
mailing list