[x265] [PATCH 7/7] AArch64: Add SVE2 saoCuStats primitives

Hari Limaye hari.limaye at arm.com
Mon May 20 16:19:23 UTC 2024


Add optimised implementations of saoCuStats primitives using SVE2
instructions for both low and high bitdepth.

Performance uplift, compared to the SVE implementations, when compiled
with LLVM 17 on a Neoverse V2 machine (higher is better):

Low bitdepth:

                 | SVE -> SVE2 |
    saoCuStatsE0 |       1.08x |
    saoCuStatsE1 |       1.06x |
    saoCuStatsE2 |       1.06x |
    saoCuStatsE3 |       1.09x |

High bitdepth:

                 | SVE -> SVE2 |
    saoCuStatsE0 |       1.03x |
    saoCuStatsE1 |       1.10x |
    saoCuStatsE2 |       1.08x |
    saoCuStatsE3 |       1.09x |
---
 source/common/CMakeLists.txt             |   7 +
 source/common/aarch64/asm-primitives.cpp |   6 +
 source/common/aarch64/sao-prim-sve.cpp   |  27 --
 source/common/aarch64/sao-prim-sve2.cpp  | 317 +++++++++++++++++++++++
 source/common/aarch64/sao-prim.h         |  35 +++
 5 files changed, 365 insertions(+), 27 deletions(-)
 create mode 100644 source/common/aarch64/sao-prim-sve2.cpp

diff --git a/source/common/CMakeLists.txt b/source/common/CMakeLists.txt
index 40c932966..7d0506909 100644
--- a/source/common/CMakeLists.txt
+++ b/source/common/CMakeLists.txt
@@ -105,6 +105,7 @@ if(ENABLE_ASSEMBLY AND (ARM64 OR CROSS_COMPILE_ARM64))
 
     set(C_SRCS_NEON asm-primitives.cpp pixel-prim.h pixel-prim.cpp filter-prim.h filter-prim.cpp dct-prim.h dct-prim.cpp loopfilter-prim.cpp loopfilter-prim.h intrapred-prim.cpp arm64-utils.cpp arm64-utils.h fun-decls.h sao-prim.cpp)
     set(C_SRCS_SVE sao-prim-sve.cpp)
+    set(C_SRCS_SVE2 sao-prim-sve2.cpp)
     enable_language(ASM)
 
     # add ARM assembly/intrinsic files here
@@ -126,6 +127,12 @@ if(ENABLE_ASSEMBLY AND (ARM64 OR CROSS_COMPILE_ARM64))
         endforeach()
     endif()
 
+    if(CPU_HAS_SVE2 AND HAVE_SVE_BRIDGE)
+        foreach(SRC ${C_SRCS_SVE2})
+            set(ASM_PRIMITIVES ${ASM_PRIMITIVES} aarch64/${SRC})
+        endforeach()
+    endif()
+
     source_group(Assembly FILES ${ASM_PRIMITIVES})
 endif(ENABLE_ASSEMBLY AND (ARM64 OR CROSS_COMPILE_ARM64))
 
diff --git a/source/common/aarch64/asm-primitives.cpp b/source/common/aarch64/asm-primitives.cpp
index bab34a493..356901dd9 100644
--- a/source/common/aarch64/asm-primitives.cpp
+++ b/source/common/aarch64/asm-primitives.cpp
@@ -1958,6 +1958,12 @@ void setupIntrinsicPrimitives(EncoderPrimitives &p, int cpuMask)
         setupSaoPrimitives_sve(p);
     }
 #endif
+#if defined(HAVE_SVE2) && HAVE_SVE_BRIDGE
+    if (cpuMask & X265_CPU_SVE2)
+    {
+        setupSaoPrimitives_sve2(p);
+    }
+#endif
 }
 
 } // namespace X265_NS
diff --git a/source/common/aarch64/sao-prim-sve.cpp b/source/common/aarch64/sao-prim-sve.cpp
index 4b9e3c5d2..889b42a79 100644
--- a/source/common/aarch64/sao-prim-sve.cpp
+++ b/source/common/aarch64/sao-prim-sve.cpp
@@ -22,33 +22,6 @@
  *****************************************************************************/
 
 #include "sao-prim.h"
-#include <arm_neon_sve_bridge.h>
-
-/* We can access instructions that are exclusive to the SVE instruction set from
- * a predominantly Neon context by making use of the Neon-SVE bridge intrinsics
- * to reinterpret Neon vectors as SVE vectors - with the high part of the SVE
- * vector (if it's longer than 128 bits) being "don't care".
- *
- * While sub-optimal on machines that have SVE vector length > 128-bit - as the
- * remainder of the vector is unused - this approach is still beneficial when
- * compared to a Neon-only implementation. */
-
-static inline int8x16_t x265_sve_mask(const int x, const int endX,
-                                      const int8x16_t in)
-{
-    // Use predicate to shift "unused lanes" outside of range [-2, 2]
-    svbool_t svpred = svwhilelt_b8(x, endX);
-    svint8_t edge_type = svsel_s8(svpred, svset_neonq_s8(svundef_s8(), in),
-                                  svdup_n_s8(-3));
-    return svget_neonq_s8(edge_type);
-}
-
-static inline int64x2_t x265_sdotq_s16(int64x2_t acc, int16x8_t x, int16x8_t y)
-{
-    return svget_neonq_s64(svdot_s64(svset_neonq_s64(svundef_s64(), acc),
-                                     svset_neonq_s16(svundef_s16(), x),
-                                     svset_neonq_s16(svundef_s16(), y)));
-}
 
 /*
  * Compute Edge Offset statistics (count and stats).
diff --git a/source/common/aarch64/sao-prim-sve2.cpp b/source/common/aarch64/sao-prim-sve2.cpp
new file mode 100644
index 000000000..0653537e5
--- /dev/null
+++ b/source/common/aarch64/sao-prim-sve2.cpp
@@ -0,0 +1,317 @@
+/*****************************************************************************
+ * Copyright (C) 2024 MulticoreWare, Inc
+ *
+ * Authors: Hari Limaye <hari.limaye at arm.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
+ *
+ * This program is also available under a commercial proprietary license.
+ * For more information, contact us at license @ x265.com.
+ *****************************************************************************/
+
+#include "sao-prim.h"
+
+static inline uint8x16_t sve_count(int8x16_t in)
+{
+    // We do not care about initialising the values in the rest of the vector,
+    // for VL > 128, as HISTSEG counts matching elements in 128-bit segments.
+    svint8_t edge_type = svset_neonq_s8(svundef_s8(), in);
+
+    // Use an arbitrary value outside of range [-2, 2] for lanes we don't
+    // need to use the result from.
+    const int DC = -3;
+    // s_eoTable maps edge types to memory in order: {2, 0, 1, 3, 4}.
+    // We use (edge_class - 2) resulting in   {0, -2, -1, 1, 2}
+    int8x16_t idx = { 0, -2, -1, 1, 2, DC, DC, DC, DC, DC, DC, DC, DC, DC, DC,
+                      DC };
+    svint8_t svidx = svset_neonq_s8(svundef_s8(), idx);
+
+    svuint8_t count = svhistseg_s8(svidx, edge_type);
+    return svget_neonq_u8(count);
+}
+
+/*
+ * Compute Edge Offset statistics (stats array).
+ * To save some instructions compute stats as negative values - since output of
+ * Neon comparison instructions for a matched condition is all 1s (-1).
+ */
+static inline void compute_eo_stats(const int8x16_t edge_type,
+                                    const int16_t *diff, int64x2_t *stats)
+{
+    // Create a mask for each edge type.
+    int8x16_t mask0 = vreinterpretq_s8_u8(vceqq_s8(edge_type, vdupq_n_s8(-2)));
+    int8x16_t mask1 = vreinterpretq_s8_u8(vceqq_s8(edge_type, vdupq_n_s8(-1)));
+    int8x16_t mask2 = vreinterpretq_s8_u8(vceqq_s8(edge_type, vdupq_n_s8(0)));
+    int8x16_t mask3 = vreinterpretq_s8_u8(vceqq_s8(edge_type, vdupq_n_s8(1)));
+    int8x16_t mask4 = vreinterpretq_s8_u8(vceqq_s8(edge_type, vdupq_n_s8(2)));
+
+    // Widen the masks to 16-bit.
+    int16x8_t mask0_lo = vreinterpretq_s16_s8(vzip1q_s8(mask0, mask0));
+    int16x8_t mask0_hi = vreinterpretq_s16_s8(vzip2q_s8(mask0, mask0));
+    int16x8_t mask1_lo = vreinterpretq_s16_s8(vzip1q_s8(mask1, mask1));
+    int16x8_t mask1_hi = vreinterpretq_s16_s8(vzip2q_s8(mask1, mask1));
+    int16x8_t mask2_lo = vreinterpretq_s16_s8(vzip1q_s8(mask2, mask2));
+    int16x8_t mask2_hi = vreinterpretq_s16_s8(vzip2q_s8(mask2, mask2));
+    int16x8_t mask3_lo = vreinterpretq_s16_s8(vzip1q_s8(mask3, mask3));
+    int16x8_t mask3_hi = vreinterpretq_s16_s8(vzip2q_s8(mask3, mask3));
+    int16x8_t mask4_lo = vreinterpretq_s16_s8(vzip1q_s8(mask4, mask4));
+    int16x8_t mask4_hi = vreinterpretq_s16_s8(vzip2q_s8(mask4, mask4));
+
+    int16x8_t diff_lo = vld1q_s16(diff);
+    int16x8_t diff_hi = vld1q_s16(diff + 8);
+
+    // Compute negative stats for each edge type.
+    stats[0] = x265_sdotq_s16(stats[0], diff_lo, mask0_lo);
+    stats[0] = x265_sdotq_s16(stats[0], diff_hi, mask0_hi);
+    stats[1] = x265_sdotq_s16(stats[1], diff_lo, mask1_lo);
+    stats[1] = x265_sdotq_s16(stats[1], diff_hi, mask1_hi);
+    stats[2] = x265_sdotq_s16(stats[2], diff_lo, mask2_lo);
+    stats[2] = x265_sdotq_s16(stats[2], diff_hi, mask2_hi);
+    stats[3] = x265_sdotq_s16(stats[3], diff_lo, mask3_lo);
+    stats[3] = x265_sdotq_s16(stats[3], diff_hi, mask3_hi);
+    stats[4] = x265_sdotq_s16(stats[4], diff_lo, mask4_lo);
+    stats[4] = x265_sdotq_s16(stats[4], diff_hi, mask4_hi);
+}
+
+/*
+ * Reduce and store Edge Offset statistics (count and stats).
+ */
+static inline void reduce_eo_stats(int64x2_t *vstats, uint16x8_t vcount,
+                                   int32_t *stats, int32_t *count)
+{
+    // s_eoTable maps edge types to memory in order: {2, 0, 1, 3, 4}.
+    // We already have the count values in the correct order for the store,
+    // so widen to 32-bit and accumulate to the destination.
+    int32x4_t c0123 = vmovl_s16(vget_low_s16(vreinterpretq_s16_u16(vcount)));
+    vst1q_s32(count, vaddq_s32(vld1q_s32(count), c0123));
+    count[4] += vcount[4];
+
+    int32x4_t s01 = vcombine_s32(vmovn_s64(vstats[2]), vmovn_s64(vstats[0]));
+    int32x4_t s23 = vcombine_s32(vmovn_s64(vstats[1]), vmovn_s64(vstats[3]));
+    int32x4_t s0123 = vpaddq_s32(s01, s23);
+    // Subtract from current stats, as we calculate the negation.
+    vst1q_s32(stats, vsubq_s32(vld1q_s32(stats), s0123));
+    stats[4] -= vaddvq_s64(vstats[4]);
+}
+
+namespace X265_NS {
+void saoCuStatsE0_sve2(const int16_t *diff, const pixel *rec, intptr_t stride,
+                       int endX, int endY, int32_t *stats, int32_t *count)
+{
+    // Separate buffers for each edge type, so that we can vectorise.
+    int64x2_t tmp_stats[5] = { vdupq_n_s64(0), vdupq_n_s64(0), vdupq_n_s64(0),
+                               vdupq_n_s64(0), vdupq_n_s64(0) };
+    uint16x8_t count_acc_u16 = vdupq_n_u16(0);
+
+    for (int y = 0; y < endY; y++)
+    {
+        uint8x16_t count_acc_u8 = vdupq_n_u8(0);
+
+        // Calculate negated sign_left(x) directly, to save negation when
+        // reusing sign_right(x) as sign_left(x + 1).
+        int8x16_t neg_sign_left = vdupq_n_s8(x265_signOf(rec[-1] - rec[0]));
+        for (int x = 0; x < endX; x += 16)
+        {
+            int8x16_t sign_right = signOf_neon(rec + x, rec + x + 1);
+
+            // neg_sign_left(x) = sign_right(x + 1), reusing one from previous
+            // iteration.
+            neg_sign_left = vextq_s8(neg_sign_left, sign_right, 15);
+
+            // Subtract instead of add, as sign_left is negated.
+            int8x16_t edge_type = vsubq_s8(sign_right, neg_sign_left);
+
+            // For reuse in the next iteration.
+            neg_sign_left = sign_right;
+
+            edge_type = x265_sve_mask(x, endX, edge_type);
+            count_acc_u8 = vaddq_u8(count_acc_u8, sve_count(edge_type));
+            compute_eo_stats(edge_type, diff + x, tmp_stats);
+        }
+
+        // The width (endX) can be a maximum of 64, so we can safely
+        // widen from 8-bit count accumulators after one inner loop iteration.
+        // Technically the largest an accumulator could reach after one inner
+        // loop iteration is 64, if every input value had the same edge type, so
+        // we could complete two iterations (2 * 64 = 128) before widening.
+        count_acc_u16 = vaddw_u8(count_acc_u16, vget_low_u8(count_acc_u8));
+
+        diff += MAX_CU_SIZE;
+        rec += stride;
+    }
+
+    reduce_eo_stats(tmp_stats, count_acc_u16, stats, count);
+}
+
+void saoCuStatsE1_sve2(const int16_t *diff, const pixel *rec, intptr_t stride,
+                       int8_t *upBuff1, int endX, int endY, int32_t *stats,
+                       int32_t *count)
+{
+    // Separate buffers for each edge type, so that we can vectorise.
+    int64x2_t tmp_stats[5] = { vdupq_n_s64(0), vdupq_n_s64(0), vdupq_n_s64(0),
+                               vdupq_n_s64(0), vdupq_n_s64(0) };
+    uint16x8_t count_acc_u16 = vdupq_n_u16(0);
+
+    // Negate upBuff1 (sign_up), so we can subtract and save repeated negations.
+    for (int x = 0; x < endX; x += 16)
+    {
+        vst1q_s8(upBuff1 + x, vnegq_s8(vld1q_s8(upBuff1 + x)));
+    }
+
+    for (int y = 0; y < endY; y++)
+    {
+        uint8x16_t count_acc_u8 = vdupq_n_u8(0);
+
+        for (int x = 0; x < endX; x += 16)
+        {
+            int8x16_t sign_up = vld1q_s8(upBuff1 + x);
+            int8x16_t sign_down = signOf_neon(rec + x, rec + x + stride);
+
+            // Subtract instead of add, as sign_up is negated.
+            int8x16_t edge_type = vsubq_s8(sign_down, sign_up);
+
+            // For reuse in the next iteration.
+            vst1q_s8(upBuff1 + x, sign_down);
+
+            edge_type = x265_sve_mask(x, endX, edge_type);
+            count_acc_u8 = vaddq_u8(count_acc_u8, sve_count(edge_type));
+            compute_eo_stats(edge_type, diff + x, tmp_stats);
+        }
+
+        // The width (endX) can be a maximum of 64, so we can safely
+        // widen from 8-bit count accumulators after one inner loop iteration.
+        // Technically the largest an accumulator could reach after one inner
+        // loop iteration is 64, if every input value had the same edge type, so
+        // we could complete two iterations (2 * 64 = 128) before widening.
+        count_acc_u16 = vaddw_u8(count_acc_u16, vget_low_u8(count_acc_u8));
+
+        diff += MAX_CU_SIZE;
+        rec += stride;
+    }
+
+    reduce_eo_stats(tmp_stats, count_acc_u16, stats, count);
+}
+
+void saoCuStatsE2_sve2(const int16_t *diff, const pixel *rec, intptr_t stride,
+                       int8_t *upBuff1, int8_t *upBufft, int endX, int endY,
+                       int32_t *stats, int32_t *count)
+{
+    // Separate buffers for each edge type, so that we can vectorise.
+    int64x2_t tmp_stats[5] = { vdupq_n_s64(0), vdupq_n_s64(0), vdupq_n_s64(0),
+                               vdupq_n_s64(0), vdupq_n_s64(0) };
+    uint16x8_t count_acc_u16 = vdupq_n_u16(0);
+
+    // Negate upBuff1 (sign_up) so we can subtract and save repeated negations.
+    for (int x = 0; x < endX; x += 16)
+    {
+        vst1q_s8(upBuff1 + x, vnegq_s8(vld1q_s8(upBuff1 + x)));
+    }
+
+    for (int y = 0; y < endY; y++)
+    {
+        uint8x16_t count_acc_u8 = vdupq_n_u8(0);
+
+        upBufft[0] = x265_signOf(rec[-1] - rec[stride]);
+        for (int x = 0; x < endX; x += 16)
+        {
+            int8x16_t sign_up = vld1q_s8(upBuff1 + x);
+            int8x16_t sign_down = signOf_neon(rec + x, rec + x + stride + 1);
+
+            // Subtract instead of add, as sign_up is negated.
+            int8x16_t edge_type = vsubq_s8(sign_down, sign_up);
+
+            // For reuse in the next iteration.
+            vst1q_s8(upBufft + x + 1, sign_down);
+
+            edge_type = x265_sve_mask(x, endX, edge_type);
+            count_acc_u8 = vaddq_u8(count_acc_u8, sve_count(edge_type));
+            compute_eo_stats(edge_type, diff + x, tmp_stats);
+        }
+
+        std::swap(upBuff1, upBufft);
+
+        // The width (endX) can be a maximum of 64, so we can safely
+        // widen from 8-bit count accumulators after one inner loop iteration.
+        // Technically the largest an accumulator could reach after one inner
+        // loop iteration is 64, if every input value had the same edge type, so
+        // we could complete two iterations (2 * 64 = 128) before widening.
+        count_acc_u16 = vaddw_u8(count_acc_u16, vget_low_u8(count_acc_u8));
+
+        rec += stride;
+        diff += MAX_CU_SIZE;
+    }
+
+    reduce_eo_stats(tmp_stats, count_acc_u16, stats, count);
+}
+
+void saoCuStatsE3_sve2(const int16_t *diff, const pixel *rec, intptr_t stride,
+                       int8_t *upBuff1, int endX, int endY, int32_t *stats,
+                       int32_t *count)
+{
+    // Separate buffers for each edge type, so that we can vectorise.
+    int64x2_t tmp_stats[5] = { vdupq_n_s64(0), vdupq_n_s64(0), vdupq_n_s64(0),
+                               vdupq_n_s64(0), vdupq_n_s64(0) };
+    uint16x8_t count_acc_u16 = vdupq_n_u16(0);
+
+    // Negate upBuff1 (sign_up) so we can subtract and save repeated negations.
+    for (int x = 0; x < endX; x += 16)
+    {
+        vst1q_s8(upBuff1 + x, vnegq_s8(vld1q_s8(upBuff1 + x)));
+    }
+
+    for (int y = 0; y < endY; y++)
+    {
+        uint8x16_t count_acc_u8 = vdupq_n_u8(0);
+
+        for (int x = 0; x < endX; x += 16)
+        {
+            int8x16_t sign_up = vld1q_s8(upBuff1 + x);
+            int8x16_t sign_down = signOf_neon(rec + x, rec + x + stride - 1);
+
+            // Subtract instead of add, as sign_up is negated.
+            int8x16_t edge_type = vsubq_s8(sign_down, sign_up);
+
+            // For reuse in the next iteration.
+            vst1q_s8(upBuff1 + x - 1, sign_down);
+
+            edge_type = x265_sve_mask(x, endX, edge_type);
+            count_acc_u8 = vaddq_u8(count_acc_u8, sve_count(edge_type));
+            compute_eo_stats(edge_type, diff + x, tmp_stats);
+        }
+
+        upBuff1[endX - 1] = x265_signOf(rec[endX] - rec[endX - 1 + stride]);
+
+        // The width (endX) can be a maximum of 64, so we can safely
+        // widen from 8-bit count accumulators after one inner loop iteration.
+        // Technically the largest an accumulator could reach after one inner
+        // loop iteration is 64, if every input value had the same edge type, so
+        // we could complete two iterations (2 * 64 = 128) before widening.
+        count_acc_u16 = vaddw_u8(count_acc_u16, vget_low_u8(count_acc_u8));
+
+        rec += stride;
+        diff += MAX_CU_SIZE;
+    }
+
+    reduce_eo_stats(tmp_stats, count_acc_u16, stats, count);
+}
+
+void setupSaoPrimitives_sve2(EncoderPrimitives &p)
+{
+    p.saoCuStatsE0 = saoCuStatsE0_sve2;
+    p.saoCuStatsE1 = saoCuStatsE1_sve2;
+    p.saoCuStatsE2 = saoCuStatsE2_sve2;
+    p.saoCuStatsE3 = saoCuStatsE3_sve2;
+}
+} // namespace X265_NS
diff --git a/source/common/aarch64/sao-prim.h b/source/common/aarch64/sao-prim.h
index e01dd28a5..4eba4bfda 100644
--- a/source/common/aarch64/sao-prim.h
+++ b/source/common/aarch64/sao-prim.h
@@ -27,6 +27,37 @@
 #include "primitives.h"
 #include <arm_neon.h>
 
+#if defined(HAVE_SVE) && HAVE_SVE_BRIDGE
+#include <arm_neon_sve_bridge.h>
+
+/* We can access instructions that are exclusive to the SVE or SVE2 instruction
+ * sets from a predominantly Neon context by making use of the Neon-SVE bridge
+ * intrinsics to reinterpret Neon vectors as SVE vectors - with the high part of
+ * the SVE vector (if it's longer than 128 bits) being "don't care".
+ *
+ * While sub-optimal on machines that have SVE vector length > 128-bit - as the
+ * remainder of the vector is unused - this approach is still beneficial when
+ * compared to a Neon-only implementation. */
+
+static inline int8x16_t x265_sve_mask(const int x, const int endX,
+                                      const int8x16_t in)
+{
+    // Use predicate to shift "unused lanes" outside of range [-2, 2]
+    svbool_t svpred = svwhilelt_b8(x, endX);
+    svint8_t edge_type = svsel_s8(svpred, svset_neonq_s8(svundef_s8(), in),
+                                  svdup_n_s8(-3));
+    return svget_neonq_s8(edge_type);
+}
+
+static inline int64x2_t x265_sdotq_s16(int64x2_t acc, int16x8_t x, int16x8_t y)
+{
+    return svget_neonq_s64(svdot_s64(svset_neonq_s64(svundef_s64(), acc),
+                                     svset_neonq_s16(svundef_s16(), x),
+                                     svset_neonq_s16(svundef_s16(), y)));
+}
+
+#endif // defined(HAVE_SVE) && HAVE_SVE_BRIDGE
+
 static inline int8x16_t signOf_neon(const pixel *a, const pixel *b)
 {
 #if HIGH_BIT_DEPTH
@@ -60,6 +91,10 @@ void setupSaoPrimitives_neon(EncoderPrimitives &p);
 #if defined(HAVE_SVE) && HAVE_SVE_BRIDGE
 void setupSaoPrimitives_sve(EncoderPrimitives &p);
 #endif
+
+#if defined(HAVE_SVE2) && HAVE_SVE_BRIDGE
+void setupSaoPrimitives_sve2(EncoderPrimitives &p);
+#endif
 }
 
 #endif // X265_COMMON_AARCH64_SAO_PRIM_H
-- 
2.42.1

-------------- next part --------------
A non-text attachment was scrubbed...
Name: 0007-AArch64-Add-SVE2-saoCuStats-primitives.patch
Type: text/x-patch
Size: 20741 bytes
Desc: not available
URL: <http://mailman.videolan.org/pipermail/x265-devel/attachments/20240520/45ca8e9e/attachment-0001.bin>


More information about the x265-devel mailing list